34 research outputs found

    Resolving the spin polarization and magnetic domain wall width of (Nd,Dy)2_{2}Fe14_{14}B with spin-polarized scanning tunneling microscopy

    Get PDF
    The electronic structure and the domain wall width of industrial (Nd,Dy)2_{2}Fe14_{14}B hard magnets were investigated using low-temperature, spin-polarized scanning tunneling microscopy (STM) in ultra-high vacuum. In a first step, atomically clean and flat surfaces were prepared. The flat terraces were separated by monatomic steps. Surface termination was identified as the Fe c layer from atomically resolved STM imaging. The electronic density of states and its spin polarization agree well with ab initio predictions of the Fe c layer. High-resolution spin-polarized STM images allowed to finally resolve the domain wall width w of only 3.2 ± 0.4 nm

    Generation of spin-polarized hot electrons at topological insulators surfaces by scattering from collective charge excitations

    Get PDF
    Topological insulators (TIs) are materials which exhibit topologically protected electronic surface states, acting as mass-less Dirac fermions. Beside their fascinating fundamental physics, TIs are also promising candidates for future spintronic devices. In this regard, generation of spin-polarized currents in TIs is the first and most important step towards their application in spin-based devices. Here we demonstrate that when electrons are scattered from the surface of bismuth selenide, a prototype TI, not only the elastic channel but also the inelastic channel is strongly spin dependent. In particular collective charge excitations (plasmons) excited at such surfaces show a large spin-dependent electron scattering. Electrons scattered by these excitations exhibit a high spin asymmetry, as high as 40%. The observed effect opens up new possibilities to generate spin-polarized currents at the surface of TIs or utilize the collective charge excitations to analyze the electrons’ spin. The results are also important to understand the spin polarization of the photo-excited electrons excited at TIs surfaces. Moreover, our finding will inspire new ideas for using these plasmonic excitations in the field of spin-plasmonics

    Creation of equal-spin triplet superconductivity at the Al/EuS interface

    Get PDF
    In conventional superconductors, electrons of opposite spins are bound into Cooper pairs. However, when the superconductor is in contact with a non-uniformly ordered ferromagnet, an exotic type of superconductivity can appear at the interface, with electrons bound into three possible spin-triplet states. Triplet pairs with equal spin play a vital role in low-dissipation spintronics. Despite the observation of supercurrents through ferromagnets, spectroscopic evidence for the existence of equal-spin triplet pairs is still missing. Here we show a theoretical model that reveals a characteristic gap structure in the quasiparticle density of states which provides a unique signature for the presence of equal-spin triplet pairs. By scanning tunnelling spectroscopy we measure the local density of states to reveal the spin configuration of triplet pairs. We demonstrate that the Al/EuS interface causes strong and tunable spin-mixing by virtue of its spin-dependent transmission.Comment: 10 pages, 4 figures, 17 pages supplementary information, 14 supplementary figure

    Reversal of Nonlocal Vortex Motion in the Regime of Strong Nonequilibrium

    Get PDF
    We investigate nonlocal vortex motion in weakly pinning a-NbGe nanostructures, which is driven by a transport current I and remotely detected as a nonlocal voltage Vnl. At high I, the measured Vnl exhibits dramatic sign reversals that at low and high temperatures T occur for opposite polarities of I. The sign of Vnl becomes independent of that of the drive current at large abs(I). These unusual effects can be nearly quantitatively explained by a novel enhancement of magnetization, arising from a nonequilibrium distribution of quasiparticles at high T, and a Nernst-like effect resulting from local electron heating at low T

    Nano-assembled open quantum dot nanotube devices

    Get PDF
    A pristine suspended carbon nanotube is a near ideal environment to host long-lived quantum states. For this reason, they have been used as the core element of qubits and to explore numerous condensed matter physics phenomena. One of the most advanced technique to realize complex carbon nanotube based quantum circuits relies on a mechanical integration of the nanotube into the circuit. Despite the high-quality and complexity of the fabricated circuits, the range of possible experiments was limited to the closed quantum dot regime. Here, by engineering a transparent metal-nanotube interface, we developed a technique that overcomes this limitation. We reliably reach the open quantum dot regime as demonstrated by measurements of Fabry-Perot interferences and Kondo physics in multiple devices. A circuit-nanotube alignment precision of ± 200 nm is demonstrated. Our technique allows to envision experiments requiring the combination of complex circuits and strongly coupled carbon nanotubes such as the realization of carbon nanotube superconducting qubits or flux-mediated optomechanics experiments

    Strongly nonequilibrium flux flow in the presence of perforating submicron holes

    Full text link
    We report on the effects of perforating submicron holes on the vortex dynamics of amorphous Nb0.7Ge0.3 microbridges in the strongly nonequilibrium mixed state, when vortex properties change substantially. In contrast to the weak nonequilibrium - when the presence of holes may result in either an increase (close to Tc) or a decrease (well below Tc) of the dissipation, in the strong nonequilibrium an enhanced dissipation is observed irrespectively of the bath temperature. Close to Tc this enhancement is similar to that in the weak nonequilibrium, but corresponds to vortices shrunk due to the Larkin-Ovchinnikov mechanism. At low temperatures the enhancement is a consequence of a weakening of the flux pinning by the holes in a regime where electron heating dominates the superconducting properties.Comment: 6 pages, 5 figure

    Cu-doped GaN grown by molecular beam epitaxy

    Get PDF
    Cu-doped GaN is a promising candidate for a nitride-based diluted magnetic semiconductor. Theoretical predictions show the possibility of ferromagnetism and high spinpolarization for certain arrangements of Cu atoms in the GaN lattice. Initial experimental results have already indicated ferromagnetism. However, the influence of structural defects on the ferromagnetic order in Cu-doped nitrides is not clear. Hence, the origin of the ferromagnetism is still under debate. We have used density functional theory (DFT) to verify previous theoretical predictions and to investigate the effects of the position of Cu atoms on the ferromagnetic properties. Our DFT calculations show high degrees of spin-polarization, independent of the arrangement of Cu atoms. Additionally, we have investigated the growth of Cu-doped GaN by molecular beam epitaxy. The influence of parameters, such as Cu to Ga ratio and growth temperature, on the structural and magnetic properties will be discussed

    Minority-spin conduction in ferromagnetic Mn5_5Ge3_3Cx_x and Mn5_5Si3_3Cx_x films derived from anisotropic magnetoresistance and density functional theory

    Get PDF
    The anisotropic magnetoresistance (AMR) of ferromagnetic Mn5_5Ge3_3Cx_x (0 ≤\le x ≤\le 1) and Mn5_5Si3_3Cx_x (0.5 ≤\le x ≤\le 1) thin films was investigated and compared with density functional theory calculations from which the spin-split electronic density of states at the Fermi level and the spin polarization were obtained. The isostructural compounds exhibit different AMR behavior. While only Mn5Si3C0.5 shows a positive AMR ratio and a positive spin polarization, the negative AMR ratio of all other compounds is due to a negative spin polarization. The correlation between the sign of the AMR and the degree of spin polarization is in agreement with theoretical calculations of the AMR ratio indicating that the magnetoelectronic transport in both compounds is dominated by minority-spin conduction. The dominating role of minority-spin conduction remains unaffected even after incorporation of carbon into the crystalline lattice which weakens both AMR and spin polarization
    corecore