34 research outputs found
Resolving the spin polarization and magnetic domain wall width of (Nd,Dy)FeB with spin-polarized scanning tunneling microscopy
The electronic structure and the domain wall width of industrial (Nd,Dy)FeB hard magnets were investigated using low-temperature, spin-polarized scanning tunneling microscopy (STM) in ultra-high vacuum. In a first step, atomically clean and flat surfaces were prepared. The flat terraces were separated by monatomic steps. Surface termination was identified as the Fe c layer from atomically resolved STM imaging. The electronic density of states and its spin polarization agree well with ab initio predictions of the Fe c layer. High-resolution spin-polarized STM images allowed to finally resolve the domain wall width w of only 3.2 ± 0.4 nm
Generation of spin-polarized hot electrons at topological insulators surfaces by scattering from collective charge excitations
Topological insulators (TIs) are materials which exhibit topologically protected electronic surface states, acting as mass-less Dirac fermions. Beside their fascinating fundamental physics, TIs are also promising candidates for future spintronic devices. In this regard, generation of spin-polarized currents in TIs is the first and most important step towards their application in spin-based devices. Here we demonstrate that when electrons are scattered from the surface of bismuth selenide, a prototype TI, not only the elastic channel but also the inelastic channel is strongly spin dependent. In particular collective charge excitations (plasmons) excited at such surfaces show a large spin-dependent electron scattering. Electrons scattered by these excitations exhibit a high spin asymmetry, as high as 40%. The observed effect opens up new possibilities to generate spin-polarized currents at the surface of TIs or utilize the collective charge excitations to analyze the electrons’ spin. The results are also important to understand the spin polarization of the photo-excited electrons excited at TIs surfaces. Moreover, our finding will inspire new ideas for using these plasmonic excitations in the field of spin-plasmonics
Creation of equal-spin triplet superconductivity at the Al/EuS interface
In conventional superconductors, electrons of opposite spins are bound into
Cooper pairs. However, when the superconductor is in contact with a
non-uniformly ordered ferromagnet, an exotic type of superconductivity can
appear at the interface, with electrons bound into three possible spin-triplet
states. Triplet pairs with equal spin play a vital role in low-dissipation
spintronics. Despite the observation of supercurrents through ferromagnets,
spectroscopic evidence for the existence of equal-spin triplet pairs is still
missing. Here we show a theoretical model that reveals a characteristic gap
structure in the quasiparticle density of states which provides a unique
signature for the presence of equal-spin triplet pairs. By scanning tunnelling
spectroscopy we measure the local density of states to reveal the spin
configuration of triplet pairs. We demonstrate that the Al/EuS interface causes
strong and tunable spin-mixing by virtue of its spin-dependent transmission.Comment: 10 pages, 4 figures, 17 pages supplementary information, 14
supplementary figure
Reversal of Nonlocal Vortex Motion in the Regime of Strong Nonequilibrium
We investigate nonlocal vortex motion in weakly pinning a-NbGe
nanostructures, which is driven by a transport current I and remotely detected
as a nonlocal voltage Vnl. At high I, the measured Vnl exhibits dramatic sign
reversals that at low and high temperatures T occur for opposite polarities of
I. The sign of Vnl becomes independent of that of the drive current at large
abs(I). These unusual effects can be nearly quantitatively explained by a novel
enhancement of magnetization, arising from a nonequilibrium distribution of
quasiparticles at high T, and a Nernst-like effect resulting from local
electron heating at low T
Nano-assembled open quantum dot nanotube devices
A pristine suspended carbon nanotube is a near ideal environment to host long-lived quantum states. For this reason, they have been used as the core element of qubits and to explore numerous condensed matter physics phenomena. One of the most advanced technique to realize complex carbon nanotube based quantum circuits relies on a mechanical integration of the nanotube into the circuit. Despite the high-quality and complexity of the fabricated circuits, the range of possible experiments was limited to the closed quantum dot regime. Here, by engineering a transparent metal-nanotube interface, we developed a technique that overcomes this limitation. We reliably reach the open quantum dot regime as demonstrated by measurements of Fabry-Perot interferences and Kondo physics in multiple devices. A circuit-nanotube alignment precision of ± 200 nm is demonstrated. Our technique allows to envision experiments requiring the combination of complex circuits and strongly coupled carbon nanotubes such as the realization of carbon nanotube superconducting qubits or flux-mediated optomechanics experiments
Strongly nonequilibrium flux flow in the presence of perforating submicron holes
We report on the effects of perforating submicron holes on the vortex
dynamics of amorphous Nb0.7Ge0.3 microbridges in the strongly nonequilibrium
mixed state, when vortex properties change substantially. In contrast to the
weak nonequilibrium - when the presence of holes may result in either an
increase (close to Tc) or a decrease (well below Tc) of the dissipation, in the
strong nonequilibrium an enhanced dissipation is observed irrespectively of the
bath temperature. Close to Tc this enhancement is similar to that in the weak
nonequilibrium, but corresponds to vortices shrunk due to the
Larkin-Ovchinnikov mechanism. At low temperatures the enhancement is a
consequence of a weakening of the flux pinning by the holes in a regime where
electron heating dominates the superconducting properties.Comment: 6 pages, 5 figure
Cu-doped GaN grown by molecular beam epitaxy
Cu-doped GaN is a promising candidate for a nitride-based diluted magnetic semiconductor. Theoretical predictions show the possibility of ferromagnetism and high spinpolarization for certain arrangements of Cu atoms in the GaN lattice. Initial experimental results have already indicated ferromagnetism. However, the influence of structural defects on the ferromagnetic order in Cu-doped nitrides is not clear. Hence, the origin of the ferromagnetism is still under debate. We have used density functional theory (DFT) to verify previous theoretical predictions and to investigate the effects of the position of Cu atoms on the ferromagnetic properties. Our DFT calculations show high degrees of spin-polarization, independent of the arrangement of Cu atoms. Additionally, we have investigated the growth of Cu-doped GaN by molecular beam epitaxy. The influence of parameters, such as Cu to Ga ratio and growth temperature, on the structural and magnetic properties will be discussed
Minority-spin conduction in ferromagnetic MnGeC and MnSiC films derived from anisotropic magnetoresistance and density functional theory
The anisotropic magnetoresistance (AMR) of ferromagnetic MnGeC (0 x 1) and MnSiC (0.5 x 1) thin films was investigated and compared with density functional theory calculations from which the spin-split electronic density of states at the Fermi level and the spin polarization were obtained. The isostructural compounds exhibit different AMR behavior. While only Mn5Si3C0.5 shows a positive AMR ratio and a positive spin polarization, the negative AMR ratio of all other compounds is due to a negative spin polarization. The
correlation between the sign of the AMR and the degree of spin polarization is in agreement with theoretical calculations of the AMR ratio indicating that the magnetoelectronic transport in both compounds is dominated by minority-spin conduction. The dominating role of minority-spin conduction remains unaffected even after incorporation of carbon into the crystalline lattice which weakens both AMR and spin polarization