27 research outputs found

    “First in Man”: Case Report of Selective C-Reactive Protein Apheresis in a Patient with Acute ST Segment Elevation Myocardial Infarction

    No full text
    C-reactive protein (CRP) may be causative in cardiovascular disease. As yet, no specific CRP inhibitor for human application has been described. A 69-year-old male was referred with ST segment elevation myocardial infarction (STEMI). Typical symptoms of chest pain started at 10.00 p.m. The patient was admitted to the hospital at 1.30 a.m. the next day. As ECG showed anterior wall myocardial infarction, the patient was immediately transferred to successful emergency angioplasty/drug-eluting- (DE-) stenting of the subtotally occluded left anterior descending artery. Consecutively, the hemodynamically stable patient was monitored at the chest pain unit. C-reactive protein (CRP) apheresis using the CRP adsorber (PentraSorb¼ CRP) within CAMI-1 trial was performed 34 h and 58 h after the onset of symptoms. In each apheresis session, 6000 ml plasma was treated via peripheral venous access. Plasma CRP levels decreased from 28.77 mg/l to 12.58 mg/l during the first apheresis session and from 24.17 mg/l to 11.55 mg/l during the second session, respectively. No side effects were observed. This is the first report of selective CRP apheresis in a man. The technology offers multiple opportunities to clarify the immunological/pathogenic role of CRP in health and disease

    Targeting C-Reactive Protein by Selective Apheresis in Humans: Pros and Cons

    No full text
    C-reactive protein (CRP), the prototype human acute phase protein, may be causally involved in various human diseases. As CRP has appeared much earlier in evolution than antibodies and nonetheless partly utilizes the same biological structures, it is likely that CRP has been the first antibody-like molecule in the evolution of the immune system. Like antibodies, CRP may cause autoimmune reactions in a variety of human pathologies. Consequently, therapeutic targeting of CRP may be of utmost interest in human medicine. Over the past two decades, however, pharmacological targeting of CRP has turned out to be extremely difficult. Currently, the easiest, most effective and clinically safest method to target CRP in humans may be the specific extracorporeal removal of CRP by selective apheresis. The latter has recently shown promising therapeutic effects, especially in acute myocardial infarction and COVID-19 pneumonia. This review summarizes the pros and cons of applying this novel technology to patients suffering from various diseases, with a focus on its use in cardiovascular medicine

    Sustainability of C-Reactive Protein Apheresis in Acute Myocardial Infarction—Results from a Supplementary Data Analysis of the Exploratory C-Reactive Protein in Acute Myocardial Infarction-1 Study

    No full text
    In the multicenter, non-randomized, exploratory C-reactive protein (CRP) Apheresis in Myocardial Infarction (CAMI-1) study, CRP apheresis after ST-Elevation Myocardial Infarction (STEMI) significantly decreased blood CRP concentrations in humans. Cardiac damage was assessed by Cardiac Magnetic Resonance (CMR1) 3–9 d after onset of STEMI symptoms and quantified by myocardial infarct size (IS; %), left ventricular ejection fraction (LVEF; %), circumferential strain (CS) and longitudinal strain (LS). Compared with the control group (n = 34), cardiac damage was significantly lower in the apheresis group (n = 32). These findings suggested improved wound healing due to CRP apheresis already within few days after the STEMI event. In the current supplementary data analysis of CAMI-1, we have tested by a follow-up CMR (CMR2) after an average of 88 (65–177) d whether the effect of CRP apheresis is clinically maintained. After this time period, wound healing in STEMI is considered complete. Whereas patients with low CRP production and a CRP gradient cut off of 0.6 mg/L/h (23 of 32 patients in the CRP apheresis group) showed significant treatment benefit. In the latter patients, CMR2 revealed a lower IS (−5.4%; p = 0.05), a better LVEF (+6.4%; p = 0.03), and an improved CS (−6.1%; p = 0.005). No significant improvement, however, was observed for LS (−2.9%; p = 0.1). These data suggest a sustained positive effect of CRP apheresis on heart physiology in STEMI patients with high CRP production well beyond the period of its application. The data demonstrate the sustainability of the CRP removal from plasma which is associated with less scar tissue

    Targeting C-Reactive Protein by Selective Apheresis in Humans: Pros and Cons

    No full text
    C-reactive protein (CRP), the prototype human acute phase protein, may be causally involved in various human diseases. As CRP has appeared much earlier in evolution than antibodies and nonetheless partly utilizes the same biological structures, it is likely that CRP has been the first antibody-like molecule in the evolution of the immune system. Like antibodies, CRP may cause autoimmune reactions in a variety of human pathologies. Consequently, therapeutic targeting of CRP may be of utmost interest in human medicine. Over the past two decades, however, pharmacological targeting of CRP has turned out to be extremely difficult. Currently, the easiest, most effective and clinically safest method to target CRP in humans may be the specific extracorporeal removal of CRP by selective apheresis. The latter has recently shown promising therapeutic effects, especially in acute myocardial infarction and COVID-19 pneumonia. This review summarizes the pros and cons of applying this novel technology to patients suffering from various diseases, with a focus on its use in cardiovascular medicine
    corecore