2 research outputs found

    Cell‐free chromatin immunoprecipitation can determine tumor gene expression in lung cancer patients

    No full text
    Cell‐free DNA (cfDNA) in blood plasma can be bound to nucleosomes that contain post‐translational modifications representing the epigenetic profile of the cell of origin. This includes histone H3 lysine 36 trimethylation (H3K36me3), a marker of active transcription. We hypothesised that cell‐free chromatin immunoprecipitation (cfChIP) of H3K36me3‐modified nucleosomes present in blood plasma can delineate tumour gene expression levels. H3K36me3 cfChIP followed by targeted NGS (cfChIP‐seq) was performed on blood plasma samples from non‐small‐cell lung cancer (NSCLC) patients (NSCLC, n = 8), small‐cell lung cancer (SCLC) patients (SCLC, n = 4) and healthy controls (n = 4). H3K36me3 cfChIP‐seq demonstrated increased enrichment of mutated alleles compared with normal alleles in plasma from patients with known somatic cancer mutations. Additionally, genes identified to be differentially expressed in SCLC and NSCLC tumours had concordant H3K36me3 cfChIP enrichment profiles in NSCLC (sensitivity = 0.80) and SCLC blood plasma (sensitivity = 0.86). Findings here expand the utility of cfDNA in liquid biopsies to characterise treatment resistance, cancer subtyping and disease progression

    DNAfusion: an R/Bioconductor package for increased sensitivity of detecting gene fusions in liquid biopsies

    No full text
    Abstract Background EML4-ALK gene fusions are oncogenic drivers in non-small cell lung cancer (NSCLC), and liquid biopsies containing EML4-ALK fragments can be used to study tumor dynamics using next-generation sequencing (NGS). However, the sensitivity of EML4-ALK detection varies between pipelines and analysis tools. Results We developed an R/Bioconductor package, DNAfusion, which can be applied to BAM files generated by commercially available NGS pipelines, such as AVENIO. Forty-eight blood samples from a training cohort consisting of 41 stage IV EML4-ALK-positive NSCLC patients and seven healthy controls were used to develop DNAfusion. DNAfusion detected EML4-ALK in significantly more samples (sensitivity = 61.0%) compared to AVENIO (sensitivity = 36.6%). The newly identified EML4-ALK-positive patients were verified using droplet digital PCR. DNAfusion was subsequently validated in a blinded validation cohort comprising 24 EML4-ALK-positive and 24 EML4-ALK-negative stage IV NSCLC patients. DNAfusion detected significantly more EML4-ALK individuals in the validation cohort (sensitivity = 62.5%) compared to AVENIO (sensitivity = 29.2%). DNAfusion demonstrated a specificity of 100% in both the training and validation cohorts. Conclusion Here we present DNAfusion, which increases the sensitivity of EML4-ALK detection in liquid biopsies and can be implemented downstream of commercially available NGS pipelines. The simplistic method of operating the R package makes it easy to implement in the clinical setting, enabling wider expansion of NGS-based diagnostics
    corecore