59 research outputs found

    An Evaluation of Popular Copy-Move Forgery Detection Approaches

    Full text link
    A copy-move forgery is created by copying and pasting content within the same image, and potentially post-processing it. In recent years, the detection of copy-move forgeries has become one of the most actively researched topics in blind image forensics. A considerable number of different algorithms have been proposed focusing on different types of postprocessed copies. In this paper, we aim to answer which copy-move forgery detection algorithms and processing steps (e.g., matching, filtering, outlier detection, affine transformation estimation) perform best in various postprocessing scenarios. The focus of our analysis is to evaluate the performance of previously proposed feature sets. We achieve this by casting existing algorithms in a common pipeline. In this paper, we examined the 15 most prominent feature sets. We analyzed the detection performance on a per-image basis and on a per-pixel basis. We created a challenging real-world copy-move dataset, and a software framework for systematic image manipulation. Experiments show, that the keypoint-based features SIFT and SURF, as well as the block-based DCT, DWT, KPCA, PCA and Zernike features perform very well. These feature sets exhibit the best robustness against various noise sources and downsampling, while reliably identifying the copied regions.Comment: Main paper: 14 pages, supplemental material: 12 pages, main paper appeared in IEEE Transaction on Information Forensics and Securit

    Automatic Dating of Historical Documents

    Get PDF
    With the growing number of digitized documents available to researchers it is becoming possible to answer scientific questions by simply analyzing the image content. In this article, a new approach for the automatic dating of historical documents is proposed. It is based on an approach only recently proposed for scribe identification. It uses local RootSIFT descriptors which are encoded using VLAD. The method is evaluated using a dataset consisting of context areas of medieval papal charters covering around 150 years from 1049 to 1198 AD. Experimental results show very promising mean absolute errors of about 17 years

    Towards Arbitrary Noise Augmentation - Deep Learning for Sampling from Arbitrary Probability Distributions

    Full text link
    Accurate noise modelling is important for training of deep learning reconstruction algorithms. While noise models are well known for traditional imaging techniques, the noise distribution of a novel sensor may be difficult to determine a priori. Therefore, we propose learning arbitrary noise distributions. To do so, this paper proposes a fully connected neural network model to map samples from a uniform distribution to samples of any explicitly known probability density function. During the training, the Jensen-Shannon divergence between the distribution of the model's output and the target distribution is minimized. We experimentally demonstrate that our model converges towards the desired state. It provides an alternative to existing sampling methods such as inversion sampling, rejection sampling, Gaussian mixture models and Markov-Chain-Monte-Carlo. Our model has high sampling efficiency and is easily applied to any probability distribution, without the need of further analytical or numerical calculations

    Recognizing Characters in Art History Using Deep Learning

    Full text link
    In the field of Art History, images of artworks and their contexts are core to understanding the underlying semantic information. However, the highly complex and sophisticated representation of these artworks makes it difficult, even for the experts, to analyze the scene. From the computer vision perspective, the task of analyzing such artworks can be divided into sub-problems by taking a bottom-up approach. In this paper, we focus on the problem of recognizing the characters in Art History. From the iconography of AnnunciationAnnunciation ofof thethe LordLord (Figure 1), we consider the representation of the main protagonists, MaryMary and GabrielGabriel, across different artworks and styles. We investigate and present the findings of training a character classifier on features extracted from their face images. The limitations of this method, and the inherent ambiguity in the representation of GabrielGabriel, motivated us to consider their bodies (a bigger context) to analyze in order to recognize the characters. Convolutional Neural Networks (CNN) trained on the bodies of MaryMary and GabrielGabriel are able to learn person related features and ultimately improve the performance of character recognition. We introduce a new technique that generates more data with similar styles, effectively creating data in the similar domain. We present experiments and analysis on three different models and show that the model trained on domain related data gives the best performance for recognizing character. Additionally, we analyze the localized image regions for the network predictions. Code is open-sourced and available at https://github.com/prathmeshrmadhu/recognize_characters_art_history and the link to the published peer-reviewed article is https://dl.acm.org/citation.cfm?id=3357242
    corecore