46 research outputs found

    H3K9 Methyltransferases and Demethylases Control Lung Tumor-Propagating Cells and Lung Cancer Progression

    Get PDF
    Epigenetic regulators are attractive anticancer targets, but the promise of therapeutic strategies inhibiting some of these factors has not been proven in vivo or taken into account tumor cell heterogeneity. Here we show that the histone methyltransferase G9a, reported to be a therapeutic target in many cancers, is a suppressor of aggressive lung tumor-propagating cells (TPCs). Inhibition of G9a drives lung adenocarcinoma cells towards the TPC phenotype by de-repressing genes which regulate the extracellular matrix. Depletion of G9a during tumorigenesis enriches tumors in TPCs and accelerates disease progression metastasis. Depleting histone demethylases represses G9a-regulated genes and TPC phenotypes. Demethylase inhibition impairs lung adenocarcinoma progression in vivo. Therefore, inhibition of G9a is dangerous in certain cancer contexts, and targeting the histone demethylases is a more suitable approach for lung cancer treatment. Understanding cellular context and specific tumor populations is critical when targeting epigenetic regulators in cancer for future therapeutic development

    Human breast cancer stem cell markers CD44 and CD24: enriching for cells with functional properties in mice or in man?

    Get PDF
    Identification of breast cancer stem cells as the cells within breast tumors that have the ability to give rise to cells that make up the bulk of the tumor mass has shifted the focus of cancer research. However, there is still much debate concerning the unique nature of the markers that distinguish cancer stem cells in the breast. As such, understanding whether CD44+/CD24- breast cancer cells are merely more successful in overcoming an engraftment incompatibility that exists when injecting human cells into the mouse adipose tissue or are indeed bona fide cancer stem cells is of great importance

    Acute pain pathways:protocol for a prospective cohort study

    Get PDF
    INTRODUCTION: Opioid analgesics are often used to treat moderate-to-severe acute non-cancer pain; however, there is little high-quality evidence to guide clinician prescribing. An essential element to developing evidence-based guidelines is a better understanding of pain management and pain control among individuals experiencing acute pain for various common diagnoses. METHODS AND ANALYSIS: This multicentre prospective observational study will recruit 1550 opioid-naïve participants with acute pain seen in diverse clinical settings including primary/urgent care, emergency departments and dental clinics. Participants will be followed for 6 months with the aid of a patient-centred health data aggregating platform that consolidates data from study questionnaires, electronic health record data on healthcare services received, prescription fill data from pharmacies, and activity and sleep data from a Fitbit activity tracker. Participants will be enrolled to represent diverse races and ethnicities and pain conditions, as well as geographical diversity. Data analysis will focus on assessing patients’ patterns of pain and opioid analgesic use, along with other pain treatments; associations between patient and condition characteristics and patient-centred outcomes including resolution of pain, satisfaction with care and long-term use of opioid analgesics; and descriptive analyses of patient management of leftover opioids. ETHICS AND DISSEMINATION: This study has received approval from IRBs at each site. Results will be made available to participants, funders, the research community and the public. TRIAL REGISTRATION NUMBER: NCT04509115

    Oncogenic Deregulation of EZH2 as an Opportunity for Targeted Therapy in Lung Cancer

    Get PDF
    As a master regulator of chromatin function, the lysine methyltransferase EZH2 orchestrates transcriptional silencing of developmental gene networks. Overexpression of EZH2 is commonly observed in human epithelial cancers, such as non-small cell lung carcinoma (NSCLC), yet definitive demonstration of malignant transformation by deregulated EZH2 remains elusive. Here, we demonstrate the causal role of EZH2 overexpression in NSCLC with new genetically-engineered mouse models of lung adenocarcinoma. Deregulated EZH2 silences normal developmental pathways leading to epigenetic transformation independent from canonical growth factor pathway activation. As such, tumors feature a transcriptional program distinct from KRAS- and EGFR-mutant mouse lung cancers, but shared with human lung adenocarcinomas exhibiting high EZH2 expression. To target EZH2-dependent cancers, we developed a novel and potent EZH2 inhibitor JQEZ5 that promoted the regression of EZH2-driven tumors in vivo, confirming oncogenic addiction to EZH2 in established tumors and providing the rationale for epigenetic therapy in a subset of lung cancer

    \u3cem\u3eLkb1\u3c/em\u3e Inactivation Drives Lung Cancer Lineage Switching Governed by Polycomb Repressive Complex 2

    Get PDF
    Adenosquamous lung tumours, which are extremely poor prognosis, may result from cellular plasticity. Here, we demonstrate lineage switching of KRAS+ lung adenocarcinomas (ADC) to squamous cell carcinoma (SCC) through deletion of Lkb1 (Stk11) in autochthonous and transplant models. Chromatin analysis reveals loss of H3K27me3 and gain of H3K27ac and H3K4me3 at squamous lineage genes, including Sox2, ΔNp63 and Ngfr. SCC lesions have higher levels of the H3K27 methyltransferase EZH2 than the ADC lesions, but there is a clear lack of the essential Polycomb Repressive Complex 2 (PRC2) subunit EED in the SCC lesions. The pattern of high EZH2, but low H3K27me3 mark, is also prevalent in human lung SCC and SCC regions within ADSCC tumours. Using FACS-isolated populations, we demonstrate that bronchioalveolar stem cells and club cells are the likely cells-of-origin for SCC transitioned tumours. These findings shed light on the epigenetics and cellular origins of lineage-specific lung tumours

    European Code against Cancer 4th Edition: Alcohol drinking and cancer.

    Get PDF
    Alcohol consumption is the third leading risk factor for disease and mortality in Europe. As evaluated by the International Agency for Research on Cancer (IARC) Monographs, a causal relationship is established for consumption of alcoholic beverages and cancers of the oral cavity, pharynx, larynx, oesophagus, liver, colorectum and female breast, even at low and moderate alcohol intakes. The higher the amount of alcohol consumed, the higher the risk of developing cancer. In Europe, an estimated 10% (95% CI: 7%-13%) of all cancer cases in men and 3% (95% CI: 1%-5%) of all cancer cases in women are attributable to alcohol consumption. Several biological mechanisms explain the carcinogenicity of alcohol; among them, ethanol and its genotoxic metabolite, acetaldehyde, play a major role. Taking all this evidence into account, a recommendation of the 4th edition of European Code against Cancer is: "If you drink alcohol of any type, limit your intake. Not drinking alcohol is better for cancer prevention.
    corecore