52 research outputs found

    Using Murine Models to Understand Tumor-Lymphoid Interactions: Spotlight on CLL and AITL

    Get PDF
    The role of the tumor microenvironment in leukemias and lymphomas is well-established, yet the intricacies of how the malignant cells regulate and influence their non-malignant counterparts remain elusive. For example, chronic lymphocytic leukemia is an expansion of malignant CD5+CD19+ B cells, yet the non-malignant T cells play just as large of a role in disease presentation and etiology. Herein, we review the dynamic tumor cell to lymphoid repertoire interactions found in two Non-Hodgkin’s lymphoma subtypes: chronic lymphocytic leukemia and angioimmunoblastic T-cell lymphoma. We aim to highlight the pivot work done in the murine models which recapitulate these diseases and explore the insights that can be gained from studying the immuno-oncological regulation of non-malignant lymphoid counterparts

    Murine Models of Splenic Marginal Zone Lymphoma: A role for Cav1?

    Get PDF
    Dozens of murine models of indolent and aggressive B-cell lymphomas have been generated to-date. These include those manifesting chronic lymphocytic leukemia (CLL), diffuse large B-cell lymphoma (DLBCL) as well as xenografts of mantle cell lymphoma (MCL). These models have led to an improved understanding of disease etiology, B-cell biology, immunomodulation, and the importance of the tumor microenvironment. Despite these efforts in CLL, DLBCL, and MCL, considerably little progress toward a model of splenic marginal zone lymphoma (SMZL) has been accomplished. Herein, we describe the similarities and differences between CLL, MCL, and SMZL, and highlight effective murine models that mimic disease in the two former, in hopes of informing a potential model of the latter. At the time of writing this review, the precise molecular events of SMZL remain to be determined and a treatment regimen remains to be identified. Therefore, based on the efforts put forth in the B-cell lymphoma field throughout the past 3 decades, the established role of caveolin-1 in B- and T-cell biology as an oncogene or tumor suppressor, and the recurrent deletion or loss of heterozygosity (LOH) of 7q in many cancers, we make recommendations for a murine model of SMZL

    How Do Former Undergraduate Mentors Evaluate Their Mentoring Experience 3-Years Post-Mentoring: A Phenomenological Study

    Get PDF
    This phenomenological study involves a unique, longitudinal assessment of the lived experiences of former undergraduate mentors (n=7) in light of their current experiences (i.e., career or advanced schooling). The objective of a phenomenological study is to engage in in-depth probing of a representative number of participants. Specifically, we followed up with graduates of the Nebraska STEM 4U (NE STEM 4U) intervention 3 years post-program, with the overall goal of describing the mentors’ experiences using the lens of their current experiences. This type of longitudinal perspective of mentoring is greatly lacking in the current literature. At the time of the interviews, all graduates were either in a STEM career or STEM-based graduate/professional program. Three major themes emerged: Career, inspiration, and challenges. Each of these themes was further broken down into sub-themes to describe the essence of the mentoring phenomenon for these individuals. This information may be beneficial for any programs that engage undergraduate students in mentoring

    Lived Experiences of Former STEM Undergraduate Mentors of an Afterschool Mentoring Program: An Interpretative Phenomenological Analysis

    Get PDF
    Studies have identified gaps in the development of undergraduate students in science, technology, engineering, and mathematics (STEM). Students lack communication and problem-solving, impeding employment opportunities post-graduation. It is essential to prepare students for employment in STEM fields, as these fields remain in high demand and offer competitive wages for economic stability. Research has revealed that students gain critical thinking and problem-solving skills through students mentoring experiences. Evidence surrounding the inclusion of active learning strategies for in-classroom pedagogy has expanded in recent years, but the support mechanisms beyond the classroom remain unclear. Herein, we followed students for a decade after participation in our mentoring pre-professional training program, Nebraska STEM for You (NE STEM 4U). This phenomenological study utilized interviewing techniques and descriptive statistics to demonstrate how a midsized, metropolitan university STEM mentoring program supported the development of NE STEM 4U participants. We found that engagement in an after-school mentoring program provided participants with a model of mentorship. Participants also developed transferable professional and personal skill sets, including communication, perspectives, conflict resolution, and professional development

    Life Science Undergraduate Mentors in NE STEM 4U Significantly Outperform Their Peers in Critical Thinking Skills

    Get PDF
    The development of critical thinking skills in recent college graduates is keenly requested by employers year after year. Moreover, improving these skills can help students to better question and analyze data. Consequently, we aimed to implement a training program that would add to the critical thinking skills of undergraduate students: Nebraska Science, Technology, Engineering, and Math 4U (NE STEM 4U). In this program, undergraduates provide outreach, mentoring, and science, technology, engineering, and mathematics (STEM) education to K–8 students. To determine the impacts of serving as an undergraduate mentor in this program on critical thinking, we compared undergraduate mentors (intervention group) with nonmentor STEM majors (nonintervention, matched group) using the valid and reliable California Critical Thinking Skills Test (CCTST) as a pre/post measurement. Importantly, before the intervention, both NE STEM 4U mentors and nonmentor undergraduates scored similarly overall on the CCTST. However, the posttest, carried out one academic year later, indicated significant gains in critical thinking by the NE STEM 4U mentors compared with the nonmentors. Specifically, the math-related skills of analysis, inference, and numeracy improved significantly in mentors compared with nonmentors

    Fostering Curiosity, Inquiry, and Scientific Thinking in Elementary School Students: Impact of the NE STEM 4U Intervention

    Get PDF
    In this qualitative study, we assessed the impact of the NE STEM 4U intervention on elementary school youth in terms of excitement, curiosity, and STEM concepts. The NE STEM 4U intervention incorporates a problem-based learning theoretical framework in an after-school time, weekly or twice-weekly intervention. We assessed student performance over two academic years of participation in the intervention using the Dimensions of Success observational tool. Ultimately, we link this mentor-led program with increases in curiosity, inquiry, and STEM concept gains. Taken together, these findings support after-school interventions in STEM areas as key encouraging excitement in youth and motivation to pursue a career in a STEM content area

    NE STEM 4U: an out-of-school time academic program to improve achievement of socioeconomically disadvantaged youth in STEM areas

    Get PDF
    Background The Nebraska Science, Technology, Engineering, and Mathematics 4U (NE STEM 4U) program was initiated at the University of Nebraska at Omaha (UNO) in 2013. NE STEM 4U is a student-run, faculty-led program facilitating problem-based learning (PBL) sessions in science, technology, engineering, and mathematics (STEM) for socioeconomically disadvantaged kindergarten through grade 8 (K-8) students. PBL sessions are provided throughout the academic year in a twice-weekly, after-school, informal education program. The instructional material provided after school builds upon the curricula of the school day. Importantly, this program is a partnership between faculty members and administrators in higher education at UNO with community partners of Omaha including Collective for Youth, Beyond School Bells, and Omaha Public Schools. We focus on engaging K-8 youth in after-school immersion experiences in STEM fields using undergraduate students as mentors and facilitators using a model of problem-based learning. Results This program fosters an educational pipeline for students with hands-on experience in problem-solving and critical thinking. The partnerships among the community provide the foundation for success for students across the K-16 pipeline. Conclusions Herein, we describe the model of this program as documented by demonstrated successes to date in an effort to guide others in developing such a model in their city or region. We also provide models for implementation of assessment instruments

    Caveolin-1 is dispensable for early lymphoid development, but plays a role in the maintenance of the mature splenic microenvironment

    Get PDF
    Objective Caveolin-1 (CAV1) is known for its role as both a tumor suppressor and an oncogene, harboring a highly context-dependent role within a myriad of malignancies and cell types. In an immunological context, dysregulation of CAV1 expression has been shown to alter immunological signaling functions and suggests a pivotal role for CAV1 in the facilitation of proper immune responses. Nonetheless, it is still unknown how Cav1-deficiency and heterozygosity would impact the development and composition of lymphoid organs in mice. Herein, we investigated the impacts of Cav1-dysregulation on the lymphoid organs in young (12 weeks) and aged (36 weeks) Cav1+/+, Cav1+/−, and Cav1−/− mice. Results We observed that only Cav1-deficiency is associated with persistent splenomegaly at all timepoints. Furthermore, no differences in overall body weight were detected (and without sexual dimorphisms). Both aged Cav1+/− and Cav1−/− mice present with decreased CD19+CD22+ B cells and secondary-follicle atrophy, specifically in the spleen, compared with wild-type controls and irrespective of splenomegaly status. Consequently, the demonstrated effects on B cell homeostasis and secondary follicle characteristics prompted our investigation into follicle-derived human B-cell lymphomas. Our investigation points toward CAV1 as a dysregulated protein in follicle-derived B-cell malignancies without harboring a differential expression between more aggressive and indolent hematological malignancies

    Community Chairs as a Catalyst for Campus Collaboration in STEM

    Get PDF
    Strong collaborative partnerships are critical to the ongoing success of any urban or metropolitan university in its efforts to build the science, technology, engineering, and mathematics (STEM) career pathways so critical to our nation. At the University of Nebraska at Omaha, we have established a faculty leadership structure of community chairs that work across colleges to support campus priorities. This paper describes UNO’s STEM community chair model, including selected initiatives, impacts, and challenges to date

    PRE-binding sites in the MDR of CLL: Potential Tumor Suppressor Regulation

    Get PDF
    Chronic lymphocytic leukemia [CLL] is the most common adult leukemia and is heterogeneous in clinical presentation. CLL cases present with various chromosomal aberrations, including 11q23, 14q32, 17p, and trisomy 12, with the most common abnormality being deletion of 13q14 [1]. Although monoallelic deletion of 13q14 is common, there is a subset of patients who have complete nullisomy at 13q14, a locus that has been hypothesized to contribute to CLL pa thogenesis [2] due to loss of tumor suppressors [DLEU and miR-15a/16-1].We hypothesized that deletion of both copies of 13q14 would lead to uncontrollable proliferation of CLL cells and a poor prognosis. We examined our 13q14 nullisomy for survival, treatment-free survival, lymphocyte doubling time, and the presence of lymphadenopathy. Furthermore, we compared the gene expression profiles between patients with 13q14 monosomy, nullisomy, or normal karyotype. Our results suggest that patients with 13q nullisomy have a higher incidence of bulky lymphadenopathy [16.6% compared to 10% of monosomy patients], a higher frequency of lymphocyte doubling time [27.7% compared to 7.4% of monosomy patients], and a higher rate of needing treatment [50% compared to 18.5% of monosomy patients]. We observed deletion of DLEU1 and HTR2A, consistent with a gene dosage effect, and observed PRE-binding sites on DLEU1. Patients with homozygous deletion of 13q14 had a worse prognosis compared to heterozygotes. Lastly, the DLEU1 locus is a possible “second hit” loss for CLL progression
    corecore