3 research outputs found

    Bromelain Inhibits Allergic Sensitization and Murine Asthma via Modulation of Dendritic Cells

    Get PDF
    The incidence of atopic conditions has increased in industrialized countries. Persisting symptoms and concern for drug side-effects lead patients toward adjunctive treatments such as phytotherapy. Previously, we have shown that Bromelain (sBr), a mixture of cysteine proteases from pineapple, Ananas comosus, inhibits ovalbumin (OVA)-induced murine model of allergic airway disease (AAD). However, sBr’s effect on development of AAD when treatment is administered throughout OVA-alum sensitization was unknown and is the aim of the present study. C57BL/6J mice were sensitized with OVA/alum and challenged with 7 days OVA aerosol. sBr 6 mg/kg/0.5 ml or PBS vehicle were administered throughout sensitization. Lung, bronchoalveolar lavage (BAL), spleen, and lymph nodes were processed for flow cytometry and OVA-specific IgE was determined via ELISA. sBr treatment throughout OVA-alum sensitization significantly reduced the development of AAD (BAL eosinophils and lymphocytes). OVA-specific IgE and OVA TET+ cells were decreased. sBr reduced CD11c+ dendritic cell subsets, and in vitro treatment of DCs significantly reduced CD44, a key receptor in both cell trafficking and activation. sBr was shown to reduce allergic sensitization and the generation of AAD upon antigen challenge. These results provide additional insight into sBr's anti-inflammatory and antiallergic properties and rationale for translation into the clinical arena

    Outcomes of Early Versus Late Tracheostomy in Patients With COVID-19: A Multinational Cohort Study.

    No full text
    UNLABELLED: Timing of tracheostomy in patients with COVID-19 has attracted substantial attention. Initial guidelines recommended delaying or avoiding tracheostomy due to the potential for particle aerosolization and theoretical risk to providers. However, early tracheostomy could improve patient outcomes and alleviate resource shortages. This study compares outcomes in a diverse population of hospitalized COVID-19 patients who underwent tracheostomy either early (within 14 d of intubation) or late (more than 14 d after intubation). DESIGN: International multi-institute retrospective cohort study. SETTING: Thirteen hospitals in Bolivia, Brazil, Spain, and the United States. PATIENTS: Hospitalized patients with COVID-19 undergoing early or late tracheostomy between March 1, 2020, and March 31, 2021. INTERVENTIONS: Not applicable. MEASUREMENTS AND MAIN RESULTS: A total of 549 patients from 13 hospitals in four countries were included in the final analysis. Multivariable regression analysis showed that early tracheostomy was associated with a 12-day decrease in time on mechanical ventilation (95% CI, -16 to -8; p \u3c 0.001). Further, ICU and hospital lengths of stay in patients undergoing early tracheostomy were 15 days (95% CI, -23 to -9 d; p \u3c 0.001) and 22 days (95% CI, -31 to -12 d) shorter, respectively. In contrast, early tracheostomy patients experienced lower risk-adjusted survival at 30-day post-admission (hazard ratio, 3.0; 95% CI, 1.8-5.2). Differences in 90-day post-admission survival were not identified. CONCLUSIONS: COVID-19 patients undergoing tracheostomy within 14 days of intubation have reduced ventilator dependence as well as reduced lengths of stay. However, early tracheostomy patients experienced lower 30-day survival. Future efforts should identify patients most likely to benefit from early tracheostomy while accounting for location-specific capacity

    Outcomes of Early Versus Late Tracheostomy in Patients With COVID-19: A Multinational Cohort Study

    No full text
    Objectives:. Timing of tracheostomy in patients with COVID-19 has attracted substantial attention. Initial guidelines recommended delaying or avoiding tracheostomy due to the potential for particle aerosolization and theoretical risk to providers. However, early tracheostomy could improve patient outcomes and alleviate resource shortages. This study compares outcomes in a diverse population of hospitalized COVID-19 patients who underwent tracheostomy either “early” (within 14 d of intubation) or “late” (more than 14 d after intubation). Design:. International multi-institute retrospective cohort study. Setting:. Thirteen hospitals in Bolivia, Brazil, Spain, and the United States. Patients:. Hospitalized patients with COVID-19 undergoing early or late tracheostomy between March 1, 2020, and March 31, 2021. Interventions:. Not applicable. Measurements and Main Results:. A total of 549 patients from 13 hospitals in four countries were included in the final analysis. Multivariable regression analysis showed that early tracheostomy was associated with a 12-day decrease in time on mechanical ventilation (95% CI, −16 to −8; p < 0.001). Further, ICU and hospital lengths of stay in patients undergoing early tracheostomy were 15 days (95% CI, −23 to −9 d; p < 0.001) and 22 days (95% CI, −31 to −12 d) shorter, respectively. In contrast, early tracheostomy patients experienced lower risk-adjusted survival at 30-day post-admission (hazard ratio, 3.0; 95% CI, 1.8−5.2). Differences in 90-day post-admission survival were not identified. Conclusions:. COVID-19 patients undergoing tracheostomy within 14 days of intubation have reduced ventilator dependence as well as reduced lengths of stay. However, early tracheostomy patients experienced lower 30-day survival. Future efforts should identify patients most likely to benefit from early tracheostomy while accounting for location-specific capacity
    corecore