94 research outputs found

    Current Status and Application of Proton Therapy for Esophageal Cancer

    Get PDF
    Esophageal cancer remains one of the leading causes of death from cancer across the world despite advances in multimodality therapy. Although early-stage disease can often be treated surgically, the current state of the art for locally advanced disease is concurrent chemoradiation, followed by surgery whenever possible. The uniform midline tumor location puts a strong importance on the need for precise delivery of radiation that would minimize dose to the heart and lungs, and the biophysical properties of proton beam makes this modality potential ideal for esophageal cancer treatment. This review covers the current state of knowledge of proton therapy for esophageal cancer, focusing on published retrospective single- and multi-institutional clinical studies, and emerging data from prospective clinical trials, that support the benefit of protons vs photon-based radiation in reducing postoperative complications, cardiac toxicity, and severe radiation induced immune suppression, which may improve survival outcomes for patients. In addition, we discuss the incorporation of immunotherapy to the curative management of esophageal cancers in the not-too-distant future. However, there is still a lack of high-level evidence to support proton therapy in the treatment of esophageal cancer, and proton therapy has its limitations in clinical application. It is expected to see the results of future large-scale randomized clinical trials and the continuous improvement of proton radiotherapy technology

    Role of mTOR through Autophagy in Esophageal Cancer Stemness

    Get PDF
    SIMPLE SUMMARY: Esophageal cancer (EC) is a highly aggressive disease with a poor prognosis, which seems related to esophageal cancer stem-like cells (CSCs), which reside in a hypoxic niche. We demonstrated, using EC cell lines and patient-derived organoids, that the hypoxia-responding mammalian target of rapamycin (mTOR) can suppress autophagy and stemness of esophageal CSCs. In addition, mTOR inhibitor Torin-1-mediated CSCs upregulation was significantly reduced in cells treated with autophagy inhibitor, hydroxychloroquine (HCQ). Collectively, our data suggest that autophagy may play a crucial role in mTOR-mediated CSCs repression. The mTOR pathway could be a novel therapeutic target for putative esophageal CSCs. ABSTRACT: Esophageal cancer (EC) is a highly aggressive disease with a poor prognosis. Therapy resistance and early recurrences are major obstacles in reaching a better outcome. Esophageal cancer stem-like cells (CSCs) seem tightly related with chemoradiation resistance, initiating new tumors and metastases. Several oncogenic pathways seem to be involved in the regulation of esophageal CSCs and might harbor novel therapeutic targets to eliminate CSCs. Previously, we identified a subpopulation of EC cells that express high levels of CD44 and low levels of CD24 (CD44(+)/CD24(−)), show CSC characteristics and reside in hypoxic niches. Here, we aim to clarify the role of the hypoxia-responding mammalian target of the rapamycin (mTOR) pathway in esophageal CSCs. We showed that under a low-oxygen culture condition and nutrient deprivation, the CD44(+)/CD24(−) population is enriched. Since both low oxygen and nutrient deprivation may inhibit the mTOR pathway, we next chemically inhibited the mTOR pathway using Torin-1. Torin-1 upregulated SOX2 resulted in an enrichment of the CD44(+)/CD24(−) population and increased sphere formation potential. In contrast, stimulation of the mTOR pathway using MHY1485 induced the opposite effects. In addition, Torin-1 increased autophagic activity, while MHY1485 suppressed autophagy. Torin-1-mediated CSCs upregulation was significantly reduced in cells treated with autophagy inhibitor, hydroxychloroquine (HCQ). Finally, a clearly defined CD44(+)/CD24(−) CSC population was detected in EC patients-derived organoids (ec-PDOs) and here, MHY1485 also reduced this population. These data suggest that autophagy may play a crucial role in mTOR-mediated CSCs repression. Stimulation of the mTOR pathway might aid in the elimination of putative esophageal CSCs

    Evaluation of continuous beam rescanning versus pulsed beam in pencil beam scanned proton therapy for lung tumours

    Get PDF
    The treatment of moving targets with pencil beam scanned proton therapy (PBS-PT) may rely on rescanning strategies to smooth out motion induced dosimetric disturbances. PBS-PT machines, such as Proteus (R) Plus (PPlus) and Proteus (R) One (POne), deliver a continuous or a pulsed beam, respectively. In PPlus, scaled (or no) rescanning can be applied, while POne implies intrinsic 'rescanning' due to its pulsed delivery. We investigated the efficacy of these PBS-PT delivery types for the treatment of lung tumours. In general, clinically acceptable plans were achieved, and PPlus and POne showed similar effectiveness

    Re-Irradiation in Patients with Recurrent Rectal Cancer is Safe and Feasible

    Get PDF
    BACKGROUND: There is no consensus yet for the best treatment regimen in patients with recurrent rectal cancer (RRC). This study aims to evaluate toxicity and oncological outcomes after re-irradiation in patients with RRC in our center. Clinical (cCR) and pathological complete response (pCR) rates and radicality were also studied. METHODS: Between January 2010 and December 2018, 61 locally advanced RRC patients were treated and analyzed retrospectively. Patients received radiotherapy at a dose of 30.0-30.6 Gy (reCRT) or 50.0-50.4 Gy chemoradiotherapy (CRT) in cases of no prior irradiation because of low-risk primary rectal cancer. In both groups, patients received capecitabine concomitantly. RESULTS: In total, 60 patients received the prescribed neoadjuvant (chemo)radiotherapy followed by surgery, 35 patients (58.3%) in the reRCT group and 25 patients (41.7%) in the long-course CRT group. There were no significant differences in overall survival (p = 0.82), disease-free survival (p = 0.63), and local recurrence-free survival (p = 0.17) between the groups. Patients in the long-course CRT group reported more skin toxicity after radiotherapy (p = 0.040). No differences were observed in late toxicity. In the long-course CRT group, a significantly higher cCR rate was observed (p = 0.029); however, there was no difference in the pCR rate (p = 0.66). CONCLUSIONS: The treatment of RRC patients with re-irradiation is comparable to treatment with long-course CRT regarding toxicity and oncological outcomes. In the reCRT group, less cCR was observed, although there was no difference in pCR. The findings in this study suggest that it is safe and feasible to re-irradiate RRC patients

    Late cardiac toxicity of neo-adjuvant chemoradiation in esophageal cancer survivors:A prospective cross-sectional pilot study

    Get PDF
    Purpose: Although cure rates in esophageal cancer (EC) have improved since the introduction of neoadjuvant chemoradiation (nCRT), evidence for treatment-related cardiac toxicity is growing, of which the exact mechanisms remain unknown. The primary objective of this study was to identify (subclinical) cardiac dysfunction in EC patients after nCRT followed by surgical resection as compared to surgery alone. Materials and Methods: EC survivors followed for 5-15 years after curative resection with (n = 20) or without (n = 20) nCRT were enrolled in this prospective cross-sectional pilot study. All patients underwent several clinical and diagnostic tests in order to objectify (sub)clinical cardiac toxicity including cardiac CT and MRI, echocardiography, ECG, 6-minutes walking test, physical examination and EORTC questionnaires. Results: We found an increased rate of myocardial fibrosis (Linear late gadolinium enhancement (LGE) 4 vs. 1; p = 0.13; mean extracellular volume (ECV) 28.4 vs. 24.0; p < 0.01), atrial fibrillation (AF) (6 vs. 2; p = 0.07) and conduction changes in ECG among patients treated with nCRT as compared to those treated with surgery alone. The results suggested an impact on quality of life in terms of worse role functioning for this patient group (95.0 vs. 88.8; p = 0.03). Conclusion: Based on our analyses we hypothesize that in EC patients, radiation-induced myocardial fibrosis plays a central role in cardiac toxicity leading to AF, conduction changes and ultimately to decreased role functioning. The results emphasize the need to verify these findings in larger cohorts of patients. (C) 2021 The Author(s). Published by Elsevier B.V

    The necessity of 4D-motion monitoring for thoracic tumors treated with pencil beam scanning proton therapy:a comprehensive 4D-imaging study

    Get PDF
    Purpose/Objective For pencil beam scanning proton therapy (PBS-PT), moving targets remain challenging due to the interplay effect. Even when using motion mitigation strategies, one needs to be aware of motion variations. We investigated weekly and daily motion variations to define the most optimal motion monitoring protocol for PBS-PT treatments of lung cancer patients. Material/Methods For 20 stage II-IV (N)SCLC patients 4DCT imaging was performed during treatment simulation (week 0) and weekly during the treatment course. GTVs were delineated on the maximum inspiration and expiration 4DCT phases and the centroid 3D-vector translations were evaluated. For one patient, daily 3D-vector centroid 4DCBCT motion was evaluated additionally. Results A median initial tumor motion (Figure 1) of 1.3 mm (range: 0.0 – 7.4 mm) was observed. GTV motions varied each week; 7 out of 20 patients showed motion variation >3 mm compared to the motion measured in week 0. Figure 2 shows that motion amplitudes extracted from weekly 4DCTs were not predictive for motion amplitudes extracted from daily 4DCBCTs. Conclusion For a considerable part of the patients, the motion measured in week 0 based on weekly repeat 4DCT imaging was not predictive for motion in the following weeks. Daily motion measured by 4DCBCT imaging for one patient suggests that weekly measured 4DCT motion is not predictive for the daily motion in between the weekly 4DCTs. This indicates that breathing motion differs from day to day and daily 4D-imaging is therefore needed to assure safe PBS-PT treatments for lung cancer patients

    Diaphragm-Based Position Verification to Improve Daily Target Dose Coverage in Proton and Photon Radiation Therapy Treatment of Distal Esophageal Cancer

    Get PDF
    Purpose: In modern conformal radiation therapy of distal esophageal cancer, target coverage can be affected by variations in the diaphragm position. We investigated if daily position verification (PV) extended by a diaphragm position correction would optimize target dose coverage for esophageal cancer treatment. Methods and Materials: For 15 esophageal cancer patients, intensity modulated proton therapy (IMPT) and volumetric modulated arc therapy (VMAT) plans were computed. Displacements of the target volume were correlated with diaphragm displacements using repeated 4-dimensional computed tomography images to determine the correction needed to account for diaphragm variations. Afterwards, target coverage was evaluated for 3 PV approaches based on: (1) bony anatomy (PV_B), (2) bony anatomy corrected for the diaphragm position (PV_BD) and (3) target volume (PV_T). Results: The cranial-caudal mean target displacement was congruent with almost half of the diaphragm displacement (y = 0.459x), which was used for the diaphragm correction in PV_BD. Target dose coverage using PV_B was adequate for most patients with diaphragm displacements up till 10 mm (>= 94% of the dose in 98% of the volume [D-98%]). For larger displacements, the target coverage was better maintained by PV_T and PV_BD. Overall, PV_BD accounted best for target displacements, especially in combination with tissue density variations (D-98%: IMPT 94% +/- 5%, VMAT 96% +/- 5%). Diaphragm displacements of more than 10 mm were observed in 22% of the cases. Conclusions: PV_B was sufficient to achieve adequate target dose coverage in case of small deviations in diaphragm position. However, large deviations of the diaphragm were best mitigated by PV_BD. To detect the cases where target dose coverage could be compromised due to diaphragm position variations, we recommend monitoring of the diaphragm position before treatment through online imaging. (C) 2021 Elsevier Inc. All rights reserved
    • …
    corecore