30 research outputs found
In Vitro and ex Vivo Inhibitory Effects of L-and D-Enantiomers of NG Nitro Arginine on Endothelium-Dependent Relaxation of Rat Aorta1
ABSTRACT ABBREVIATIONS: Arg, argmnmne;NO, nitric oxide; NMMA, N#{176}-monomethyl-arginmne;NAME, N#{176}-nitro-L-argininemethyl ester; L-NlO, N-iminoethyl-Lomithine; NNA, N#{176}-nitro-arginmne; i.-NM, N#{176}-ammno-L-arginine; ACh, acetyicholine; SNP, sodium nitroprusside; PHE, phenylephrine; MAP, mean arterial pressure; EDRF, endothelium-derived relaxing factor
A Non-Canonical Function of Zebrafish Telomerase Reverse Transcriptase Is Required for Developmental Hematopoiesis
Although it is clear that telomerase expression is crucial for the maintenance of telomere homeostasis, there is increasing evidence that the TERT protein can have physiological roles that are independent of this central function. To further examine the role of telomerase during vertebrate development, the zebrafish telomerase reverse transcriptase (zTERT) was functionally characterized. Upon zTERT knockdown, zebrafish embryos show reduced telomerase activity and are viable, but develop pancytopenia resulting from aberrant hematopoiesis. The blood cell counts in TERT-depleted zebrafish embryos are markedly decreased and hematopoietic cell differentiation is impaired, whereas other somatic lineages remain morphologically unaffected. Although both primitive and definitive hematopoiesis is disrupted by zTERT knockdown, the telomere lengths are not significantly altered throughout early development. Induced p53 deficiency, as well as overexpression of the anti-apoptotic proteins Bcl-2 and E1B-19K, significantly relieves the decreased blood cells numbers caused by zTERT knockdown, but not the impaired blood cell differentiation. Surprisingly, only the reverse transcriptase motifs of zTERT are crucial, but the telomerase RNA-binding domain of zTERT is not required, for rescuing complete hematopoiesis. This is therefore the first demonstration of a non-canonical catalytic activity of TERT, which is different from “authentic” telomerase activity, is required for during vertebrate hematopoiesis. On the other hand, zTERT deficiency induced a defect in hematopoiesis through a potent and specific effect on the gene expression of key regulators in the absence of telomere dysfunction. These results suggest that TERT non-canonically functions in hematopoietic cell differentiation and survival in vertebrates, independently of its role in telomere homeostasis. The data also provide insights into a non-canonical pathway by which TERT functions to modulate specification of hematopoietic stem/progenitor cells during vertebrate development. (276 words
Human germline heterozygous gain-of-function STAT6 variants cause severe allergic disease
STAT6 (signal transducer and activator of transcription 6) is a transcription factor that plays a central role in the pathophysiology of allergic inflammation. We have identified 16 patients from 10 families spanning three continents with a profound phenotype of early-life onset allergic immune dysregulation, widespread treatment-resistant atopic dermatitis, hypereosinophilia with esosinophilic gastrointestinal disease, asthma, elevated serum IgE, IgE-mediated food allergies, and anaphylaxis. The cases were either sporadic (seven kindreds) or followed an autosomal dominant inheritance pattern (three kindreds). All patients carried monoallelic rare variants in STAT6 and functional studies established their gain-of-function (GOF) phenotype with sustained STAT6 phosphorylation, increased STAT6 target gene expression, and TH2 skewing. Precision treatment with the anti-IL-4Rα antibody, dupilumab, was highly effective improving both clinical manifestations and immunological biomarkers. This study identifies heterozygous GOF variants in STAT6 as a novel autosomal dominant allergic disorder. We anticipate that our discovery of multiple kindreds with germline STAT6 GOF variants will facilitate the recognition of more affected individuals and the full definition of this new primary atopic disorder
Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points
Analysis of shared heritability in common disorders of the brain
ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Possible role of adenosine 5’-triphosphate in the cardiovascular system of the rat
The experiments described in this thesis were designed to characterize a possible
role for adenosine 5’-triphosphate (ATP) in the cardiovascular system of the conscious rat.
This study assessed the role of ATP in the control of mean arterial pressure (MAP), heart
rate (HR), and mean circulatory filling pressure (MCFP) by examining the effects of receptor
antagonists (of cx-adrenoceptors, P1- andP2-purinoceptors, and autonomic ganglia), chemi
cal sympathectomy (by reserpine or guanethidine), and ATP per se. Furthermore, we
compared the contribution of endogenous ATP and noradrenaline (NA) in basal vascular
tone with that during drug-induced vasodilatation and concomittant elevation of sympa
thetic nerve activity.
Phentolamine (non-selective c-adrenoceptor antagonist) was found to be a more
effective arterial than venous vasodilator in both basal conditions and during drug
(hydralazine or nifedipine)-induced vasodilatation and reflex venoconstriction. While MCFP
was not significantly decreased by phentolamine either under basal conditions or during
hydralazine treatment, phentolamine did decrease MCFP in the presence of nifedipine.
Following suramin treatment, the phentolamine-induced depressor effect was significantly
potentiated whereas MCFP remained unchanged. Under basal conditions, mecamylamine
very effectively reduced both MAP and MCFP whereas in the presence of hydralazine
induced vasodilatation and elevated venomotor tone, ganglion blockade reduced MCFP
but not MAP.
Blockade ofP2-purinoceptors by suramin produced a dose-dependent increase in
MAP and decrease in HR neither of which was affected by hydralazine, nifedipine,
mecamylamine, reserpine, or guanethidine. Suramin failed to reduce MCFP in the pres
ence of hydralazine, nifedipine, or guanethidine. In contrast, mecamylamine treatment
revealed a significant dose-dependent decrease in MCFP by suramin, while reserpine
treatment revealed a slight but significant decline in MCFP. l.v. infusion of ATP produced profound depressor and bradycardic effects. The ATP
induced depressor effect was unaffected by mecamylamine and suramin whereas block
ade of Pi-purinoceptors by 8-phenyltheophylline clearly and significantly attenuated this
response. Blockade of P2y-purinoceptors by cibacron blue only slightly and insignificantly
attenuated the depressor effect of ATP. ATP-induced bradycardia was not affected by
mecamylamine or cibacron blue whereas 8-phenyltheophylline completely abolished this
response and even revealed a slight, but insignificant, increase in HR in response toATP.
Suramin slightly but insignificantly enhanced the ATP-induced bradycardia. ATP produced
a slight but insignificant depression of MCFP which was unaltered in the presence of
suramin, and slightly but insignificantly enhanced both during mecamylamine-induced
ganglion blockade and following 8-phenyltheophylline treatment. Cibacron blue, in con
trast, revealed a slight but insignificant ATP-induced increase in MCFP.Medicine, Faculty ofAnesthesiology, Pharmacology and Therapeutics, Department ofGraduat
Interaction of SNAREs with ArfGAPs Precedes Recruitment of Sec18p/NSF
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are key components of the fusion machinery in vesicular transport and in homotypic membrane fusion. We previously found that ADP-ribosylation factor GTPase activating proteins (ArfGAPs) promoted a conformational change on SNAREs that allowed recruitment of the small GTPase Arf1p in stoichiometric amounts. Here, we show that the ArfGAP Gcs1p accelerates vesicle (v)-target membrane (t)-SNARE complex formation in vitro, indicating that ArfGAPs may act as folding chaperones. These SNARE complexes were resolved in the presence of ATP by the yeast homologues of α-soluble N-ethylmaleimide-sensitive factor attachment protein and N-ethylmaleimide-sensitive factor, Sec17p and Sec18p, respectively. In addition, Sec18p and Sec17p also recognized the “activated” SNAREs even when they were not engaged in v-t-SNARE complexes. Here again, the induction of a conformational change by ArfGAPs was essential. Surprisingly, recruitment of Sec18p to SNAREs did not require Sec17p or ATP hydrolysis. Moreover, Sec18p displaced prebound Arf1p from SNAREs, indicating that Sec18p may have more than one function: first, to ensure that all vesicle coat proteins are removed from the SNAREs before the engagement in a trans-SNARE complex; and second, to resolve cis-SNARE complexes after fusion has occurred