23 research outputs found

    Gray matter alterations in early and late relapsing-remitting multiple sclerosis evaluated with synthetic quantitative magnetic resonance imaging

    Get PDF
    Abstract: Extensive gray matter (GM) involvement has been demonstrated in multiple sclerosis (MS) patients. This study was aimed to identify GM alterations in relapsing-remitting MS (RRMS) patients using synthetic quantitative MRI (qMRI). We assessed myelin volume fraction (MVF) in each voxel on the basis of R1 and R2 relaxation rates and proton density in 14 early and 28 late (disease duration 5 years, respectively) RRMS patients, and 15 healthy controls (HCs). The MVF and myelin volumes of GM (GM-MyVol) were compared between groups using GM-based spatial statistics (GBSS) and the Kruskal-Wallis test, respectively. Correlations between MVF or GM-MyVol and disease duration or expanded disability status scale were also evaluated. RRMS patients showed a lower MVF than HCs, predominantly in the limbic and para-limbic areas, with more extensive areas noted in late RRMS patients. Late-RRMS patients had the smallest GM-MyVol (20.44 mL; early RRMS, 22.77 mL; HCs, 23.36 mL). Furthermore, the GM-MyVol in the RRMS group was inversely correlated with disease duration (r = -0.43, p = 0.005). In conclusion, the MVF and MyVol obtained by synthetic qMRI can be used to evaluate GM differences in RRMS patients

    Advanced Diffusion MR Imaging for Multiple Sclerosis in the Brain and Spinal Cord

    No full text
    Diffusion tensor imaging (DTI) has been established its usefulness in evaluating normal-appearing white matter (NAWM) and other lesions that are difficult to evaluate with routine clinical MRI in the evaluation of the brain and spinal cord lesions in multiple sclerosis (MS), a demyelinating disease. With the recent advances in the software and hardware of MRI systems, increasingly complex and sophisticated MRI and analysis methods, such as q-space imaging, diffusional kurtosis imaging, neurite orientation dispersion and density imaging, white matter tract integrity, and multiple diffusion encoding, referred to as advanced diffusion MRI, have been proposed. These are capable of capturing in vivo microstructural changes in the brain and spinal cord in normal and pathological states in greater detail than DTI. This paper reviews the current status of recent advanced diffusion MRI for assessing MS in vivo as part of an issue celebrating two decades of magnetic resonance in medical sciences (MRMS), an official journal of the Japanese Society of Magnetic Resonance in Medicine
    corecore