2,063 research outputs found

    More security or less insecurity

    Get PDF
    We depart from the conventional quest for ‘Completely Secure Systems’ and ask ‘How can we be more Secure’. We draw heavily from the evolution of the Theory of Justice and the arguments against the institutional approach to Justice. Central to our argument is the identification of redressable insecurity, or weak links. Our contention is that secure systems engineering is not really about building perfectly secure systems but about redressing manifest insecurities.Final Accepted Versio

    Geometric approach to Fletcher's ideal penalty function

    Get PDF
    Original article can be found at: www.springerlink.com Copyright Springer. [Originally produced as UH Technical Report 280, 1993]In this note, we derive a geometric formulation of an ideal penalty function for equality constrained problems. This differentiable penalty function requires no parameter estimation or adjustment, has numerical conditioning similar to that of the target function from which it is constructed, and also has the desirable property that the strict second-order constrained minima of the target function are precisely those strict second-order unconstrained minima of the penalty function which satisfy the constraints. Such a penalty function can be used to establish termination properties for algorithms which avoid ill-conditioned steps. Numerical values for the penalty function and its derivatives can be calculated efficiently using automatic differentiation techniques.Peer reviewe

    Inelastic neutron scattering study on the resonance mode in an optimally doped superconductor LaFeAsO0.92_{0.92}F0.08_{0.08}

    Full text link
    An optimally doped iron-based superconductor LaFeAsO0.92_{0.92}F0.08_{0.08} with Tc=29T_c = 29 K has been studied by inelastic powder neutron scattering. The magnetic excitation at Q=1.15Q=1.15 \AA−1^{-1} is enhanced below TcT_c, leading to a peak at Eres∼13E_{res}\sim13 meV as the resonance mode, in addition to the formation of a gap at low energy below the crossover energy Δc∼10meV\Delta_{c}\sim10 meV. The peak energy at Q=1.15Q=1.15 \AA−1^{-1} corresponds to 5.2kBTc5.2 k_B T_c in good agreement with the other values of resonance mode observed in the various iron-based superconductors, even in the high-TcT_c cuprates. Although the phonon density of states has a peak at the same energy as the resonance mode in the present superconductor, the QQ-dependence is consistent with the resonance being of predominately magnetic origin.Comment: 4 pages, 5 Postscript figure

    Ytterbium divalency and lattice disorder in near-zero thermal expansion YbGaGe

    Get PDF
    While near-zero thermal expansion (NZTE) in YbGaGe is sensitive to stoichiometry and defect concentration, the NZTE mechanism remains elusive. We present x-ray absorption spectra that show unequivocally that Yb is nearly divalent in YbGaGe and the valence does not change with temperature or with nominally 1% B or 5% C impurities, ruling out a valence-fluctuation mechanism. Moreover, substantial changes occur in the local structure around Yb with B and C inclusion. Together with inelastic neutron scattering measurements, these data indicate a strong tendency for the lattice to disorder, providing a possible explanation for NZTE in YbGaGe.Comment: 4 pages, 4 figure, supplementary inf
    • …
    corecore