1,217 research outputs found
Liquid lubrication in sheet metal forming at mesoscopic scale
The lubricant entrapment and escape phenomena in metal forming are studied experimentally as well as numerically. Experiments are carried out in strip reduction of aluminium sheet applying a transparent die to study the fluid flow between mesoscopic cavities. The numerical strategy is based on a weak fluid/structure coupling involving the Finite ElementMethod and analytical calculations. It allows to quantify the final shape of the lubricant pocket
An automated method to build groundwater model hydrostratigraphy from airborne electromagnetic data and lithological borehole logs
Abstract. Large-scale integrated hydrological models are important decision support tools in water resources management. The largest source of uncertainty in such models is the hydrostratigraphic model. Geometry and configuration of hydrogeological units are often poorly determined from hydrogeological data alone. Due to sparse sampling in space, lithological borehole logs may overlook structures that are important for groundwater flow at larger scales. Good spatial coverage along with high spatial resolution makes airborne time-domain electromagnetic (AEM) data valuable for the structural input to large-scale groundwater models. We present a novel method to automatically integrate large AEM data-sets and lithological information into large-scale hydrological models. Clay-fraction maps are produced by translating geophysical resistivity into clay-fraction values using lithological borehole information. Voxel models of electrical resistivity and clay fraction are classified into hydrostratigraphic zones using k-means clustering. Hydraulic conductivity values of the zones are estimated by hydrological calibration using hydraulic head and stream discharge observations. The method is applied to a Danish case study. Benchmarking hydrological performance by comparison of simulated hydrological state variables, the cluster model performed competitively. Calibrations of 11 hydrostratigraphic cluster models with 1â11 hydraulic conductivity zones showed improved hydrological performance with increasing number of clusters. Beyond the 5-cluster model hydrological performance did not improve. Due to reproducibility and possibility of method standardization and automation, we believe that hydrostratigraphic model generation with the proposed method has important prospects for groundwater models used in water resources management.</jats:p
Effects of finite curvature on soliton dynamics in a chain of nonlinear oscillators
We consider a curved chain of nonlinear oscillators and show that the
interplay of curvature and nonlinearity leads to a number of qualitative
effects. In particular, the energy of nonlinear localized excitations centered
on the bending decreases when curvature increases, i.e. bending manifests
itself as a trap for excitations. Moreover, the potential of this trap is
double-well, thus leading to a symmetry breaking phenomenon: a symmetric
stationary state may become unstable and transform into an energetically
favorable asymmetric stationary state. The essentials of symmetry breaking are
examined analytically for a simplified model. We also demonstrate a threshold
character of the scattering process, i.e. transmission, trapping, or reflection
of the moving nonlinear excitation passing through the bending.Comment: 13 pages (LaTeX) with 10 figures (EPS
Quasiperiodic Envelope Solitons
We analyse nonlinear wave propagation and cascaded self-focusing due to
second-harmonic generation in Fibbonacci optical superlattices and introduce a
novel concept of nonlinear physics, the quasiperiodic soliton, which describes
spatially localized self-trapping of a quasiperiodic wave. We point out a link
between the quasiperiodic soliton and partially incoherent spatial solitary
waves recently generated experimentally.Comment: Submitted to PRL. 4 pages with 5 figure
Detection of Potential Transit Signals in the First Three Quarters of Kepler Mission Data
We present the results of a search for potential transit signals in the first
three quarters of photometry data acquired by the Kepler Mission. The targets
of the search include 151,722 stars which were observed over the full interval
and an additional 19,132 stars which were observed for only 1 or 2 quarters.
From this set of targets we find a total of 5,392 detections which meet the
Kepler detection criteria: those criteria are periodicity of the signal, an
acceptable signal-to-noise ratio, and a composition test which rejects spurious
detections which contain non-physical combinations of events. The detected
signals are dominated by events with relatively low signal-to-noise ratio and
by events with relatively short periods. The distribution of estimated transit
depths appears to peak in the range between 40 and 100 parts per million, with
a few detections down to fewer than 10 parts per million. The detected signals
are compared to a set of known transit events in the Kepler field of view which
were derived by a different method using a longer data interval; the comparison
shows that the current search correctly identified 88.1% of the known events. A
tabulation of the detected transit signals, examples which illustrate the
analysis and detection process, a discussion of future plans and open,
potentially fruitful, areas of further research are included
An angle-scanned cryogenic Fabry-PĂ©rot interferometer for far-infrared astronomy
The sensitivity of state-of-the-art superconducting far-infrared detectors used in conjunction with cryogenically cooled space telescopes and instrumentation is such that spectroscopic observations are generally limited by photon noise from the astronomical source or by galactic foreground or zodiacal emission within the field-of-view. Therefore, an instrument design that restricts the spectral bandpass viewed by the detector must be employed. One method of achieving background limited, high resolution spectroscopy is to combine a high resolution component such as a FabryâPĂ©rot interferometer (FPI) with a lower resolution, post-dispersing system, such as a grating spectrometer, the latter serving to restrict the spectral bandpass. The resonant wavelength of an FPI is most often tuned by changing the spacing or medium between the parallel reflecting plates of the etalon. In this paper, we present a novel design for an FPI in which the wavelength is tuned by scanning the angle of incidence on a high refractive index etalon. This concept simplifies the cryomechanical design, actuation, and metrology. The first results from the realized instrument are presented and compared with theory. The effects on the spectral response as a function of the incident angle have been simulated and shown to agree well with the observation
- âŠ