16 research outputs found

    Intrinsic Language-Guided Exploration for Complex Long-Horizon Robotic Manipulation Tasks

    Full text link
    Current reinforcement learning algorithms struggle in sparse and complex environments, most notably in long-horizon manipulation tasks entailing a plethora of different sequences. In this work, we propose the Intrinsically Guided Exploration from Large Language Models (IGE-LLMs) framework. By leveraging LLMs as an assistive intrinsic reward, IGE-LLMs guides the exploratory process in reinforcement learning to address intricate long-horizon with sparse rewards robotic manipulation tasks. We evaluate our framework and related intrinsic learning methods in an environment challenged with exploration, and a complex robotic manipulation task challenged by both exploration and long-horizons. Results show IGE-LLMs (i) exhibit notably higher performance over related intrinsic methods and the direct use of LLMs in decision-making, (ii) can be combined and complement existing learning methods highlighting its modularity, (iii) are fairly insensitive to different intrinsic scaling parameters, and (iv) maintain robustness against increased levels of uncertainty and horizons.Comment: 8 pages, 3 figure

    Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning

    Get PDF
    Exploration in multi-agent reinforcement learning is a challenging problem, especially in environments with sparse rewards. We propose a general method for efficient exploration by sharing experience amongst agents. Our proposed algorithm, called Shared Experience Actor-Critic (SEAC), applies experience sharing in an actor-critic framework. We evaluate SEAC in a collection of sparse-reward multi-agent environments and find that it consistently outperforms two baselines and two state-of-the-art algorithms by learning in fewer steps and converging to higher returns. In some harder environments, experience sharing makes the difference between learning to solve the task and not learning at all.Comment: 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canad

    Pareto Actor-Critic for Equilibrium Selection in Multi-Agent Reinforcement Learning

    Full text link
    This work focuses on equilibrium selection in no-conflict multi-agent games, where we specifically study the problem of selecting a Pareto-optimal equilibrium among several existing equilibria. It has been shown that many state-of-the-art multi-agent reinforcement learning (MARL) algorithms are prone to converging to Pareto-dominated equilibria due to the uncertainty each agent has about the policy of the other agents during training. To address sub-optimal equilibrium selection, we propose Pareto Actor-Critic (Pareto-AC), which is an actor-critic algorithm that utilises a simple property of no-conflict games (a superset of cooperative games): the Pareto-optimal equilibrium in a no-conflict game maximises the returns of all agents and therefore is the preferred outcome for all agents. We evaluate Pareto-AC in a diverse set of multi-agent games and show that it converges to higher episodic returns compared to seven state-of-the-art MARL algorithms and that it successfully converges to a Pareto-optimal equilibrium in a range of matrix games. Finally, we propose PACDCG, a graph neural network extension of Pareto-AC which is shown to efficiently scale in games with a large number of agents.Comment: 20 pages, 12 figure

    Learning Task Embeddings for Teamwork Adaptation in Multi-Agent Reinforcement Learning

    Full text link
    Successful deployment of multi-agent reinforcement learning often requires agents to adapt their behaviour. In this work, we discuss the problem of teamwork adaptation in which a team of agents needs to adapt their policies to solve novel tasks with limited fine-tuning. Motivated by the intuition that agents need to be able to identify and distinguish tasks in order to adapt their behaviour to the current task, we propose to learn multi-agent task embeddings (MATE). These task embeddings are trained using an encoder-decoder architecture optimised for reconstruction of the transition and reward functions which uniquely identify tasks. We show that a team of agents is able to adapt to novel tasks when provided with task embeddings. We propose three MATE training paradigms: independent MATE, centralised MATE, and mixed MATE which vary in the information used for the task encoding. We show that the embeddings learned by MATE identify tasks and provide useful information which agents leverage during adaptation to novel tasks.Comment: To be presented at the Seventh Workshop on Generalization in Planning at the NeurIPS 2023 conferenc

    Ask more, know better: Reinforce-Learned Prompt Questions for Decision Making with Large Language Models

    Full text link
    Large language models (LLMs) demonstrate their promise in tackling complicated practical challenges by combining action-based policies with chain of thought (CoT) reasoning. Having high-quality prompts on hand, however, is vital to the framework's effectiveness. Currently, these prompts are handcrafted utilizing extensive human labor, resulting in CoT policies that frequently fail to generalize. Human intervention is also required in order to develop grounding functions that ensure low-level controllers appropriately process CoT reasoning. In this paper, we take the first step towards a fully integrated end-to-end framework for task-solving in real settings employing complicated reasoning. To that purpose, we offer a new leader-follower bilevel framework capable of learning to ask relevant questions (prompts) and subsequently undertaking reasoning to guide the learning of actions to be performed in an environment. A good prompt should make introspective revisions based on historical findings, leading the CoT to consider the anticipated goals. A prompt-generator policy has its own aim in our system, allowing it to adapt to the action policy and automatically root the CoT process towards outputs that lead to decisive, high-performing actions. Meanwhile, the action policy is learning how to use the CoT outputs to take specific actions. Our empirical data reveal that our system outperforms leading methods in agent learning benchmarks such as Overcooked and FourRoom
    corecore