2 research outputs found
Effects of Aerobic Exercise on Brain Age and Health in Middle-Aged and Older Adults: A Single-Arm Pilot Clinical Trial
Backgrounds: Sleep disturbances are prevalent among elderly individuals. While polysomnography (PSG) serves as the gold standard for sleep monitoring, its extensive setup and data analysis procedures impose significant costs and time constraints, thereby restricting the long-term application within the general public. Our laboratory introduced an innovative biomarker, utilizing artificial intelligence algorithms applied to PSG data to estimate brain age (BA), a metric validated in cohorts with cognitive impairments. Nevertheless, the potential of exercise, which has been a recognized means of enhancing sleep quality in middle-aged and older adults to reduce BA, remains undetermined. Methods: We conducted an exploratory study to evaluate whether 12 weeks of moderate-intensity exercise can improve cognitive function, sleep quality, and the brain age index (BAI), a biomarker computed from overnight sleep electroencephalogram (EEG), in physically inactive middle-aged and older adults. Home wearable devices were used to monitor heart rate and overnight sleep EEG over this period. The NIH Toolbox Cognition Battery, in-lab overnight polysomnography, cardiopulmonary exercise testing, and a multiplex cytokines assay were employed to compare pre- and post-exercise brain health, exercise capacity, and plasma proteins. Results: In total, 26 participants completed the initial assessment and exercise program, and 24 completed all procedures. Data are presented as mean [lower 95% CI of mean, upper 95% CI of mean]. Participants significantly increased maximal oxygen consumption (Pre: 21.11 [18.98, 23.23], Post 22.39 [20.09, 24.68], mL/kg/min; effect size: −0.33) and decreased resting heart rate (Pre: 66.66 [63.62, 67.38], Post: 65.13 [64.25, 66.93], bpm; effect size: −0.02) and sleeping heart rate (Pre: 64.55 [61.87, 667.23], Post: 62.93 [60.78, 65.09], bpm; effect size: −0.15). Total cognitive performance (Pre: 111.1 [107.6, 114.6], Post: 115.2 [111.9, 118.5]; effect size: 0.49) was significantly improved. No significant differences were seen in BAI or measures of sleep macro- and micro-architecture. Plasma IL-4 (Pre: 0.24 [0.18, 0.3], Post: 0.33 [0.24, 0.42], pg/mL; effect size: 0.49) was elevated, while IL-8 (Pre: 5.5 [4.45, 6.55], Post: 4.3 [3.66, 5], pg/mL; effect size: −0.57) was reduced. Conclusions: Cognitive function was improved by a 12-week moderate-intensity exercise program in physically inactive middle-aged and older adults, as were aerobic fitness (VO2max) and plasma cytokine profiles. However, we found no measurable effects on sleep architecture or BAI. It remains to be seen whether a study with a larger sample size and more intensive or more prolonged exercise exposure can demonstrate a beneficial effect on sleep quality and brain age
Recommended from our members
Declining NAD+ Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication during Aging
Ever since eukaryotes subsumed the bacterial ancestor of mitochondria, the nuclear and mitochondrial genomes have had to closely coordinate their activities, as each encode different subunits of the oxidative phosphorylation (OXPHOS) system. Mitochondrial dysfunction is a hallmark of aging, but its causes are debated. We show that, during aging, there is a specific loss of mitochondrial, but not nuclear, encoded OXPHOS subunits. We trace the cause to an alternate PGC-1α/β-independent pathway of nuclear-mitochondrial communication that is induced by a decline in nuclear NAD+ and the accumulation of HIF-1α under normoxic conditions, with parallels to Warburg reprogramming. Deleting SIRT1 accelerates this process, whereas raising NAD+ levels in old mice restores mitochondrial function to that of a young mouse in a SIRT1-dependent manner. Thus, a pseudohypoxic state that disrupts PGC-1α/β-independent nuclear-mitochondrial communication contributes to the decline in mitochondrial function with age, a process that is apparently reversible