277 research outputs found
Combining Stereo Disparity and Optical Flow for Basic Scene Flow
Scene flow is a description of real world motion in 3D that contains more
information than optical flow. Because of its complexity there exists no
applicable variant for real-time scene flow estimation in an automotive or
commercial vehicle context that is sufficiently robust and accurate. Therefore,
many applications estimate the 2D optical flow instead. In this paper, we
examine the combination of top-performing state-of-the-art optical flow and
stereo disparity algorithms in order to achieve a basic scene flow. On the
public KITTI Scene Flow Benchmark we demonstrate the reasonable accuracy of the
combination approach and show its speed in computation.Comment: Commercial Vehicle Technology Symposium (CVTS), 201
SceneFlowFields: Dense Interpolation of Sparse Scene Flow Correspondences
While most scene flow methods use either variational optimization or a strong
rigid motion assumption, we show for the first time that scene flow can also be
estimated by dense interpolation of sparse matches. To this end, we find sparse
matches across two stereo image pairs that are detected without any prior
regularization and perform dense interpolation preserving geometric and motion
boundaries by using edge information. A few iterations of variational energy
minimization are performed to refine our results, which are thoroughly
evaluated on the KITTI benchmark and additionally compared to state-of-the-art
on MPI Sintel. For application in an automotive context, we further show that
an optional ego-motion model helps to boost performance and blends smoothly
into our approach to produce a segmentation of the scene into static and
dynamic parts.Comment: IEEE Winter Conference on Applications of Computer Vision (WACV),
201
- …