7 research outputs found

    Narrow genetic basis for the Australian dingo confirmed through analysis of paternal ancestry

    Get PDF
    The dingo (Canis lupus dingo) is an iconic animal in the native culture of Australia, but archaeological and molecular records indicate a relatively recent history on the continent. Studies of mitochondrial DNA (mtDNA) imply that the current dingo population was founded by a small population of already tamed dogs from Southeast Asia. However, the maternal genetic data might give a unilateral picture, and the gene pool has yet to be screened for paternal ancestry. We sequenced 14,437 bp of the Y-chromosome (Y-chr) from two dingoes and one New Guinea Singing Dog (NGSD). This positioned dingo and NGSD within the domestic dog Y-chr phylogeny, and produced one haplotype not detected before. With this data, we characterized 47 male dingoes in 30 Y-chr single-nucleotide polymorphism sites using protease-mediated allele-specific extension technology. Only two haplotypes, H3 and H60, were found among the dingoes, at frequencies of 68.1 and 31.9 %, respectively, compared to 27 haplotypes previously established in the domestic dog. While H3 is common among Southeast Asian dogs, H60 was specifically found in dingoes and the NGSD, but was related to Southeast Asian dog Y-chr haplotypes. H3 and H60 were observed exclusively in the western and eastern parts of Australia, respectively, but had a common range in Southeast. Thus, the Y-chr diversity was very low, similar to previous observations for d-loop mtDNA. Overall genetic evidence suggests a very restricted introduction of the first dingoes into Australia, possibly from New Guinea. This study further confirms the dingo as an isolated feral dog. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10709-012-9658-5) contains supplementary material, which is available to authorized users

    Dog Y chromosomal DNA sequence: identification, sequencing and SNP discovery

    Get PDF
    BACKGROUND: Population genetic studies of dogs have so far mainly been based on analysis of mitochondrial DNA, describing only the history of female dogs. To get a picture of the male history, as well as a second independent marker, there is a need for studies of biallelic Y-chromosome polymorphisms. However, there are no biallelic polymorphisms reported, and only 3200 bp of non-repetitive dog Y-chromosome sequence deposited in GenBank, necessitating the identification of dog Y chromosome sequence and the search for polymorphisms therein. The genome has been only partially sequenced for one male dog, disallowing mapping of the sequence into specific chromosomes. However, by comparing the male genome sequence to the complete female dog genome sequence, candidate Y-chromosome sequence may be identified by exclusion. RESULTS: The male dog genome sequence was analysed by Blast search against the human genome to identify sequences with a best match to the human Y chromosome and to the female dog genome to identify those absent in the female genome. Candidate sequences were then tested for male specificity by PCR of five male and five female dogs. 32 sequences from the male genome, with a total length of 24 kbp, were identified as male specific, based on a match to the human Y chromosome, absence in the female dog genome and male specific PCR results. 14437 bp were then sequenced for 10 male dogs originating from Europe, Southwest Asia, Siberia, East Asia, Africa and America. Nine haplotypes were found, which were defined by 14 substitutions. The genetic distance between the haplotypes indicates that they originate from at least five wolf haplotypes. There was no obvious trend in the geographic distribution of the haplotypes. CONCLUSION: We have identified 24159 bp of dog Y-chromosome sequence to be used for population genetic studies. We sequenced 14437 bp in a worldwide collection of dogs, identifying 14 SNPs for future SNP analyses, and giving a first description of the dog Y-chromosome phylogeny

    Microarray analysis using disiloxyl 70mer oligonucleotides

    Get PDF
    DNA microarray technology has evolved dramatically in recent years, and is now a common tool in researchers' portfolios. The scope of the technique has expanded from small-scale studies to extensive studies such as classification of disease states. Technical knowledge regarding solid phase microarrays has also increased, and the results acquired today are more reliable than those obtained just a few years ago. Nevertheless, there are various aspects of microarray analysis that could be improved. In this article we show that the proportions of full-length probes used significantly affects the results of global analyses of transcriptomes. In particular, measurements of transcripts in low abundance are more sensitive to truncated probes, which generally increase the degree of cross hybridization and loss of specific signals. In order to improve microarray analysis, we here introduce a disiloxyl purification step, which ensures that all the probes on the microarray are at full length. We demonstrate that when the features on microarrays consist of full-length probes the signal intensity is significantly increased. The overall increase in intensity enables the hybridization stringency to be increased, and thus enhance the robustness of the results

    Dog Y chromosomal DNA sequence: identification, sequencing and SNP discovery

    No full text
    Abstract Background Population genetic studies of dogs have so far mainly been based on analysis of mitochondrial DNA, describing only the history of female dogs. To get a picture of the male history, as well as a second independent marker, there is a need for studies of biallelic Y-chromosome polymorphisms. However, there are no biallelic polymorphisms reported, and only 3200 bp of non-repetitive dog Y-chromosome sequence deposited in GenBank, necessitating the identification of dog Y chromosome sequence and the search for polymorphisms therein. The genome has been only partially sequenced for one male dog, disallowing mapping of the sequence into specific chromosomes. However, by comparing the male genome sequence to the complete female dog genome sequence, candidate Y-chromosome sequence may be identified by exclusion. Results The male dog genome sequence was analysed by Blast search against the human genome to identify sequences with a best match to the human Y chromosome and to the female dog genome to identify those absent in the female genome. Candidate sequences were then tested for male specificity by PCR of five male and five female dogs. 32 sequences from the male genome, with a total length of 24 kbp, were identified as male specific, based on a match to the human Y chromosome, absence in the female dog genome and male specific PCR results. 14437 bp were then sequenced for 10 male dogs originating from Europe, Southwest Asia, Siberia, East Asia, Africa and America. Nine haplotypes were found, which were defined by 14 substitutions. The genetic distance between the haplotypes indicates that they originate from at least five wolf haplotypes. There was no obvious trend in the geographic distribution of the haplotypes. Conclusion We have identified 24159 bp of dog Y-chromosome sequence to be used for population genetic studies. We sequenced 14437 bp in a worldwide collection of dogs, identifying 14 SNPs for future SNP analyses, and giving a first description of the dog Y-chromosome phylogeny.</p
    corecore