29 research outputs found

    Abscopal Effects in Radio-Immunotherapy—Response Analysis of Metastatic Cancer Patients With Progressive Disease Under Anti-PD-1 Immune Checkpoint Inhibition

    Get PDF
    Immune checkpoint inhibition (ICI) targeting the programmed death receptor 1 (PD-1) has shown promising results in the fight against cancer. Systemic anti-tumor reactions due to radiation therapy (RT) can lead to regression of non-irradiated lesions (NiLs), termed “abscopal effect” (AbE). Combination of both treatments can enhance this effect. The aim of this study was to evaluate AbEs during anti-PD-1 therapy and irradiation. We screened 168 patients receiving pembrolizumab or nivolumab at our center. Inclusion criteria were start of RT within 1 month after the first or last application of pembrolizumab (2 mg/kg every 3 weeks) or nivolumab (3 mg/kg every 2 weeks) and at least one metastasis outside the irradiation field. We estimated the total dose during ICI for each patient using the linear quadratic (LQ) model expressed as 2 Gy equivalent dose (EQD2) using α/β of 10 Gy. Radiological images were required showing progression or no change in NiLs before and regression after completion of RT(s). Images must have been acquired at least 4 weeks after the onset of ICI or RT. The surface areas of the longest diameters of the short- and long-axes of NiLs were measured. One hundred twenty-six out of 168 (75%) patients received ICI and RT. Fifty-three percent (67/126) were treated simultaneously, and 24 of these (36%) were eligible for lesion analysis. AbE was observed in 29% (7/24). One to six lesions (mean = 3 ± 2) in each AbE patient were analyzed. Patients were diagnosed with malignant melanoma (MM) (n = 3), non-small cell lung cancer (NSCLC) (n = 3), and renal cell carcinoma (RCC) (n = 1). They were irradiated once (n = 1), twice (n = 2), or three times (n = 4) with an average total EQD2 of 120.0 ± 37.7 Gy. Eighty-two percent of RTs of AbE patients were applied with high single doses. MM patients received pembrolizumab, NSCLC, and RCC patients received nivolumab for an average duration of 45 ± 35 weeks. We demonstrate that 29% of the analyzed patients showed AbE. Strict inclusion criteria were applied to distinguish the effects of AbE from the systemic effect of ICI. Our data suggest the clinical existence of systemic effects of irradiation under ICI and could contribute to the development of a broader range of cancer treatments

    Follow-up of the GHSG HD16 trial of PET-guided treatment in early-stage favorable Hodgkin lymphoma.

    Get PDF
    The primary analysis of the GHSG HD16 trial indicated a significant loss of tumor control with PET-guided omission of radiotherapy (RT) in patients with early-stage favorable Hodgkin lymphoma (HL). This analysis reports long-term outcomes. Overall, 1150 patients aged 18-75 years with newly diagnosed early-stage favorable HL were randomized between standard combined-modality treatment (CMT) (2x ABVD followed by PET/CT [PET-2] and 20 Gy involved-field RT) and PET-2-guided treatment omitting RT in case of PET-2 negativity (Deauville score [DS] < 3). The study aimed at excluding inferiority of PET-2-guided treatment and assessing the prognostic impact of PET-2 in patients receiving CMT. At a median follow-up of 64 months, PET-2-negative patients had a 5-year progression-free survival (PFS) of 94.2% after CMT (n = 328) and 86.7% after ABVD alone (n = 300; HR = 2.05 [1.20-3.51]; p = 0.0072). 5-year OS was 98.3% and 98.8%, respectively (p = 0.14); 4/12 documented deaths were caused by second primary malignancies and only one by HL. Among patients assigned to CMT, 5-year PFS was better in PET-2-negative (n = 353; 94.0%) than in PET-2-positive patients (n = 340; 90.3%; p = 0.012). The difference was more pronounced when using DS4 as cut-off (DS 1-3: n = 571; 94.0% vs. DS ≥ 4: n = 122; 83.6%; p < 0.0001). Taken together, CMT should be considered standard treatment for early-stage favorable HL irrespective of the PET-2-result

    Early economic modeling of magnetic resonance image-guided high intensity focused ultrasound compared to radiotherapy for pain palliation of bone metastases

    No full text
    IntroductionMagnetic Resonance Image-guided High Intensity Focused Ultrasound (MR-HIFU) is a non-invasive treatment option for palliative patients with painful bone metastases. Early evidence suggests that MR-HIFU is associated with similar overall treatment response, but more rapid pain palliation compared to external beam radiotherapy (EBRT). This modelling study aimed to assess the cost-effectiveness of MR-HIFU as an alternative treatment option for painful bone metastases from the perspective of the German Statutory Health Insurance (SHI). Materials and methodsA microsimulation model with lifelong time horizon and one-month cycle length was developed. To calculate the incremental cost-effectiveness ratio (ICER), strategy A (MR-HIFU as first-line treatment or as retreatment option in case of persistent pain or only partial pain relief after EBRT) was compared to strategy B (EBRT alone) for patients with bone metastases due to breast, prostate, or lung cancer. Input parameters used for the model were extracted from the literature. Results were expressed as EUR per quality-adjusted life years (QALYs) and EUR per pain response (i.e., months spent with complete or partial pain response). Deterministic and probabilistic sensitivity analyses (PSA) were performed to test the robustness of results, and a value of information analysis was conducted. ResultsCompared to strategy B, strategy A resulted in additional costs (EUR 399) and benefits (0.02 QALYs and 0.95 months with pain response). In the base case, the resulting ICERs (strategy A vs. strategy B) are EUR 19,845/QALY and EUR 421 per pain response. Offering all patients MR-HIFU as first-line treatment would increase the ICER by 50% (31,048 EUR/QALY). PSA showed that at a (hypothetical) willingness to pay of EUR 20,000/QALY, the probability of MR-HIFU being cost-effective was 52%. The expected value of perfect information (EVPI) for the benefit population in Germany is approximately EUR 190 Mio. ConclusionAlthough there is considerable uncertainty, the results demonstrate that introducing MR-HIFU as a treatment alternative for painful bone metastases might be cost-effective for the German SHI. The high EVPI indicate that further studies to reduce uncertainty would be worthwhile

    Abscopal Effects in Radio-Immunotherapy - Response Analysis of Metastatic Cancer Patients With Progressive Disease Under Anti-PD-1 Immune Checkpoint Inhibition

    Get PDF
    Immune checkpoint inhibition (ICI) targeting the programmed death receptor 1 (PD-1) has shown promising results in the fight against cancer. Systemic anti-tumor reactions due to radiation therapy (RT) can lead to regression of non-irradiated lesions (NiLs), termed abscopal effect (AbE). Combination of both treatments can enhance this effect. The aim of this study was to evaluate AbEs during anti-PD-1 therapy and irradiation. We screened 168 patients receiving pembrolizumab or nivolumab at our center. Inclusion criteria were start of RT within 1 month after the first or last application of pembrolizumab (2 mg/kg every 3 weeks) or nivolumab (3mg/kg every 2 weeks) and at least onemetastasis outside the irradiation field. We estimated the total dose during ICI for each patient using the linear quadratic (LQ) model expressed as 2Gy equivalent dose (EQD2) using alpha/beta of 10Gy. Radiological images were required showing progression or no change in NiLs before and regression after completion of RT(s). Images must have been acquired at least 4 weeks after the onset of ICI or RT. The surface areas of the longest diameters of the short-and long-axes of NiLs were measured. One hundred twenty-six out of 168 (75%) patients received ICI and RT. Fifty-three percent (67/126) were treated simultaneously, and 24 of these (36%) were eligible for lesion analysis. AbE was observed in 29% (7/24). One to six lesions (mean = 3 +/- 2) in each AbE patient were analyzed. Patients were diagnosed with malignant melanoma (MM) (n = 3), non-small cell lung cancer (NSCLC) (n = 3), and renal cell carcinoma (RCC) (n = 1). They were irradiated once (n = 1), twice (n = 2), or three times (n = 4) with an average total EQD2 of 120.0 +/- 37.7Gy. Eighty-two percent of RTs of AbE patients were applied with high single doses. MMpatients received pembrolizumab, NSCLC, and RCC patients received nivolumab for an average duration of 45 +/- 35 weeks. We demonstrate that 29% of the analyzed patients showed AbE. Strict inclusion criteria were applied to distinguish the effects of AbE from the systemic effect of ICI. Our data suggest the clinical existence of systemic effects of irradiation under ICI and could contribute to the development of a broader range of cancer treatments

    Addition of Radiotherapy to Immunotherapy: Effects on Outcome of Different Subgroups Using a Propensity Score Matching

    No full text
    Immune checkpoint inhibition (ICI) has been established as successful modality in cancer treatment. Combination concepts are used to optimize treatment outcome, but may also induce higher toxicity rates than monotherapy. Several rationales support the combination of radiotherapy (RT) with ICI as radioimmunotherapy (RIT), but it is still unknown in which clinical situation RIT would be most beneficial. Therefore, we have conducted a retrospective matched-pair analysis of 201 patients with advanced-stage cancers and formed two groups treated with programmed cell death protein 1 (PD-1) inhibitors only (PD1i) or in combination with local RT (RIT) at our center between 2013 and 2017. We collected baseline characteristics, programmed death ligand 1 (PD-L1) status, mutational status, PD-1 inhibitor and RT treatment details, and side effects according to the Common Terminology Criteria for Adverse Events (CTCAE) v.5.0. Patients received pembrolizumab (n = 93) or nivolumab (n = 108), 153 with additional RT. For overall survival (OS) and progression-free survival (PFS), there was no significant difference between both groups. After propensity score matching (PSM), we analyzed 96 patients, 67 with additional and 29 without RT. We matched for different covariates that could have a possible influence on the treatment outcome. The RIT group displayed a trend towards a longer OS until the PD1i group reached a survival plateau. PD-L1-positive patients, smokers, patients with a BMI <= 25, and patients without malignant melanoma showed a longer OS when treated with RIT. Our data show that some subgroups may benefit more from RIT than others. Suitable biomarkers as well as the optimal timing and dosage must be established in order to achieve the best effect on cancer treatment outcome

    European Association of Nuclear Medicine (EANM) Focus 4 consensus recommendations:molecular imaging and therapy in haematological tumours

    Get PDF
    Given the paucity of high-certainty evidence, and differences in opinion on the use of nuclear medicine for hematological malignancies, we embarked on a consensus process involving key experts in this area. We aimed to assess consensus within a panel of experts on issues related to patient eligibility, imaging techniques, staging and response assessment, follow-up, and treatment decision-making, and to provide interim guidance by our expert consensus. We used a three-stage consensus process. First, we systematically reviewed and appraised the quality of existing evidence. Second, we generated a list of 153 statements based on the literature review to be agreed or disagreed with, with an additional statement added after the first round. Third, the 154 statements were scored by a panel of 26 experts purposively sampled from authors of published research on haematological tumours on a 1 (strongly disagree) to 9 (strongly agree) Likert scale in a two-round electronic Delphi review. The RAND and University of California Los Angeles appropriateness method was used for analysis. Between one and 14 systematic reviews were identified on each topic. All were rated as low to moderate quality. After two rounds of voting, there was consensus on 139 (90%) of 154 of the statements. There was consensus on most statements concerning the use of PET in non-Hodgkin and Hodgkin lymphoma. In multiple myeloma, more studies are required to define the optimal sequence for treatment assessment. Furthermore, nuclear medicine physicians and haematologists are awaiting consistent literature to introduce volumetric parameters, artificial intelligence, machine learning, and radiomics into routine practice.</p
    corecore