217 research outputs found
Efficient Machine-type Communication using Multi-metric Context-awareness for Cars used as Mobile Sensors in Upcoming 5G Networks
Upcoming 5G-based communication networks will be confronted with huge
increases in the amount of transmitted sensor data related to massive
deployments of static and mobile Internet of Things (IoT) systems. Cars acting
as mobile sensors will become important data sources for cloud-based
applications like predictive maintenance and dynamic traffic forecast. Due to
the limitation of available communication resources, it is expected that the
grows in Machine-Type Communication (MTC) will cause severe interference with
Human-to-human (H2H) communication. Consequently, more efficient transmission
methods are highly required. In this paper, we present a probabilistic scheme
for efficient transmission of vehicular sensor data which leverages favorable
channel conditions and avoids transmissions when they are expected to be highly
resource-consuming. Multiple variants of the proposed scheme are evaluated in
comprehensive realworld experiments. Through machine learning based combination
of multiple context metrics, the proposed scheme is able to achieve up to 164%
higher average data rate values for sensor applications with soft deadline
requirements compared to regular periodic transmission.Comment: Best Student Paper Awar
Spin Physics at COMPASS
The COMPASS experiment is a fixed target experiment at the CERN SPS using
muon and hadron beams for the investigation of the spin structure of the
nucleon and hadron spectroscopy. The main objective of the muon physics program
is the study of the spin of the nucleon in terms of its constituents, quarks
and gluons. COMPASS has accumulated data during 6 years scattering polarized
muons off a longitudinally or a transversely polarized deuteron (6LiD) or
proton (NH3) target. Results for the gluon polarization are obtained from
longitudinal double spin cross section asymmetries using two different
channels, open charm production and high transverse momentum hadron pairs, both
proceeding through the photon-gluon fusion process. Also, the longitudinal spin
structure functions of the proton and the deuteron were measured in parallel as
well as the helicity distributions for the three lightest quark flavors. With a
transversely polarized target, results were obtained with proton and deuteron
targets for the Collins and Sivers asymmetries for charged hadrons as well as
for identified kaons and pions. The Collins asymmetry is sensitive to the
transverse spin structure of the nucleon, while the Sivers asymmetry reflects
correlations between the quark transverse momentum and the nucleon spin.
Recently, a new proposal for the COMPASS II experiment was accepted by the CERN
SPS which includes two new topics: Exclusive reactions like DVCS and DVMP using
the muon beam and a hydrogen target to study generalized parton distributions
and Drell-Yan measurements using a pion beam and a polarized NH3 target to
study transverse momentum dependent distributions.Comment: Proceedings of the Rutherford conference, Manchester, August 2011.
Changes due to referees comments implemente
Seamless Integration of Group Communication into an Adaptive Online Exercise System
Distance learners in traditional online exercise and tutoring systems often get stuck with questions for which they need the help of a tutor or colleague. Learning alone can also be frustrating. In our Communication And Tutoring System CATS we have integrated the possibility to dial up a tutor and/or to setup an immediate group communication with other distance learners using Internet videoconferencing technology. To find the appropriate partner, we have implemented a measurement algorithm that keeps track of the performance level of a learner by measuring the percentage of correct answers at the current level, the reliability with which the learner answers the questions and the time he/she takes. From these measures we derive a unified performance parameter that controls the presentation of the next set of questions. These are then generated dynamically by the exercise applet. The CATS system automatically selects the most appropriate communica-tion partner(s) bas! ed on the exercises the learners are currently working on, and on their skill levels. We motivate this approach from a pedagogical point of view and present the architecture and implementation of the CATS system
Ein Kommunikations- und Tutoring-System fĂŒr Lerngruppen im Internet
In der klassischen Lehre spielen Ăbungen eine entscheidende Rolle fĂŒr den Lernerfolg der Studierenden. Insbesondere GruppenĂŒbungen ermöglichen es, einen Wissensgegenstand aus unterschiedlichen Perspektiven zu betrachten und durch das Mittel der Externalisierung besser zu verstehen. Dies setzt allerdings eine direkte Kommunikation zwischen den beteiligten Personen voraus. Im Bereich der Fernlehre sind diese Möglichkeiten aufgrund der rĂ€umlichen Trennung und der technischen Gegebenheiten nur sehr eingeschrĂ€nkt gegeben. Zum einen existieren entsprechende Systeme nur fĂŒr Teilaspekte, zum anderen fehlen bisher adaptive integrierte GruppenĂŒbungen. Das in dieser Arbeit vorgestellte Communication and Tutoring System (CATS) integriert zum einen adaptive Aufgaben mit einem standardisierten Kommunikationssystem und ermöglicht dadurch die Vermittlung von Wissen zwischen den Studierenden untereinander und zwischen Studierenden und Lehrenden. Zum anderen wird ein generischer Ansatz zur technischen Abwicklung von Gruppenarbeiten in der Fernlehre vorgestellt. Sowohl die adaptiven individuellen Ăbungsaufgaben wie auch das Gruppenarbeitskonzept sind in verschiedenen FĂ€chern einsetzbar. Entsprechende Hilfsprogramme unterstĂŒtzen die Lehrenden bei der Erstellung von Ăbungsaufgaben, besondere Programmierkenntnisse sind hierzu nicht erforderlich. Damit wurde Forderungen aus der Lernpsychologie Rechnung getragen, die bisher, insbesondere im Bereich der Fernlehre, nicht erfĂŒllt werden konnten. Bereits bei der Architektur des Systems wurde darauf geachtet, eine stabile, nachhaltige Umsetzung des Systems zu gewĂ€hrleisten, ohne auf eine notwendige FlexibilitĂ€t zu verzichten. Ein spezielles Integrationsmodell ermöglicht die rasche Anbindung an bestehende Lernplattformen. Im Rahmen dieser Arbeit wurde die Anbindung an die Lernplattform ".LRN" realisiert. Das Communication and Tutoring System (CATS) wurde im aktiven Ăbungsbetrieb zur UnterstĂŒtzung der Vorlesung Rechnernetze an der UniversitĂ€t Mannheim in den Sommersemestern 2003 und 2004 und auch fĂŒr die Vorlesung Multimediatechnik im Wintersemester 2003/04 eingesetzt. Es werden die Ergebnisse einer empirischen Untersuchung prĂ€sentiert, die zum WS 2003/04 im Rahmen der Vorlesung Multimediatechnik durchgefĂŒhrt wurde. Diese betraf sowohl die Akzeptanz des Systems bei den Studierenden wie auch die Klausurergebnisse der CATS-Benutzer. Zudem werden die Examensergebnisse von PrĂ€senzstudierenden der Rechnernetze-Vorlesung im SS 2004 mit denen der Fernstudierenden verglichen. CATS wurde auĂerdem in den Projekten ULI, VIROR, Winfoline und Politikon erfolgreich eingesetzt
Replicability and comprehensibility of social research and its technical implementation
"This paper is a contribution to the methodological and technical discussion of social research infrastructure. The main question is how to store and manage data in a way that meets the increasing demand for secondary data analysis in both quantitative and qualitative social science research. The first two sections focus mainly on aspects of data documentation, in particular on the unification of various documentation requirements that have arisen across ongoing projects of the SFB 882. While the aim of documenting quantitative research processes is to ensure replicability, the aim of documenting qualitative projects is to maintain the understandability and informative value of research data. In the third section a virtual research environment (VRE) is presented that provides both a generic work platform and a project-specific research platform. The work platform bundles IT resources by bringing together various tools for administration, project management, and time- and location-independent collaboration in a single environment adapted to researchers' specific work processes. The research component combines data management with further developments in social science methodologies. It provides services for the archiving and reuse of data and enables the infrastructural and methodological coordination of data documentation. We also introduce a documentation scheme for qualitative and quantitative social research within the SFB 882. This scheme considers the specific requirements of research projects within the SFB, such as different methods (e.g. panel analysis, experimental approaches, ethnography, and interview research), project work, and requirements of longterm research." (author's abstract
Untersuchungen zur Differenzierung von cerebellĂ€ren Purkinjezellen nach Ăberexpression des Transkriptionsfaktors Engrailed-2
In dem transgenen Mausmodell L7En-2 wird der Transkriptionsfaktor Engrailed-2 in Purkinjezellen des Kleinhirns spezifisch ĂŒberexprimiert. Als Folge sterben 40% dieser Zellen in der frĂŒhen Postnatalphase ab, ausserdem entwickeln sich die DendritenbĂ€ume nur vermindert und die Monolayerbildung ist verzögert. Das Absterben der Zellen und die verminderte Dendritogenese finden auch in organotypischen Schnittkulturen statt. Zwar scheinen Wegfindung und Reifung der Axone von L7En-2 Purkinjezellen nicht beeintrĂ€chtigt zu sein, allerdings bilden sich im proximalen Abschnitt der Axone regelmĂ€ssig Auftreibungen, die dornfortsatzĂ€hnliche Strukturen tragen. Elektronenmikroskopisch und immunhistochemisch konnte gezeigt werden, dass am axonalen Pol der Purkinjezellsomata Mikrotubuli, Golgi-Apparat und Ribosomen nicht in ihrer typischen Anordnung sondern ungeordnet vorliegen. DarĂŒberhinaus konnten elektronenmikroskopisch in dieser Region zahlreiche Synapsen tragende DornfortsĂ€tze identifiziert werden, die Ultrastruktur des axonalen Pols Ă€hnelte also der eines Dendriten. Insgesamt weisen die Ergebnisse darauf hin, dass Engrailed-2 ein wichtiger Faktor bei der Bildung subzellulĂ€rer Kompartimente ist und, dass die physiologische Herunterregulation von Engrailed-2 in frĂŒh postnatalen Purkinjezellen wichtig fĂŒr ein Umschalten vom axonalen zum dendritischen Wachstumsmodus ist.Effects of Engrailed-2 overexpression on the differentiation of cerebellar Purkinje cells In the transgenic mouse model L7En-2, the transcription factor Engrailed-2 is specifically overexpressed in cerebellar Purkinje cells. As a consequence, 40% of Purkinje cells are lost during early postnatal development, and the dendritic arborization and monolayer formation is markedly retarded. In organotypic slice cultures, altered cell loss and dendritogenesis is recapitulated. While axonal pathfinding and maturation does not seem to be affected in L7En-2 Purkinje cells, they develop large swellings in the proximal part of their axons, often carrying spine-like structures. Electron microscopy and immunohistochemical stainings revealed an unorganized distribution of microtubules, Golgi stacks and ribosomes at the axonal somatic pole of Purkinje cells. In addition, a massive accumulation of spines containing synapses can be observed at the axonal pole, reminding of dendritic ultrastructure. The outlined findings suggest that Engrailed-2 is involved in processes underlying the establishment of cellular compartmentation and that physiological downregulation of Engrailed-2 during perinatal development is important for the switch from the axonal to the dendritic growth mode
Machine learning based context-predictive car-to-cloud communication using multi-layer connectivity maps for upcoming 5G networks
While cars were only considered as means of personal transportation for a
long time, they are currently transcending to mobile sensor nodes that gather
highly up-to-date information for crowdsensing-enabled big data services in a
smart city context. Consequently, upcoming 5G communication networks will be
confronted with massive increases in Machine-type Communication (MTC) and
require resource-efficient transmission methods in order to optimize the
overall system performance and provide interference-free coexistence with human
data traffic that is using the same public cellular network. In this paper, we
bring together mobility prediction and machine learning based channel quality
estimation in order to improve the resource-efficiency of car-to-cloud data
transfer by scheduling the transmission time of the sensor data with respect to
the anticipated behavior of the communication context. In a comprehensive field
evaluation campaign, we evaluate the proposed context-predictive approach in a
public cellular network scenario where it is able to increase the average data
rate by up to 194% while simultaneously reducing the mean uplink power
consumption by up to 54%
- âŠ