918 research outputs found
Quasi-period collapse and GL_n(Z)-scissors congruence in rational polytopes
Quasi-period collapse occurs when the Ehrhart quasi-polynomial of a rational
polytope has a quasi-period less than the denominator of that polytope. This
phenomenon is poorly understood, and all known cases in which it occurs have
been proven with ad hoc methods. In this note, we present a conjectural
explanation for quasi-period collapse in rational polytopes. We show that this
explanation applies to some previous cases appearing in the literature. We also
exhibit examples of Ehrhart polynomials of rational polytopes that are not the
Ehrhart polynomials of any integral polytope.
Our approach depends on the invariance of the Ehrhart quasi-polynomial under
the action of affine unimodular transformations. Motivated by the similarity of
this idea to the scissors congruence problem, we explore the development of a
Dehn-like invariant for rational polytopes in the lattice setting.Comment: 8 pages, 3 figures, to appear in the proceedings of Integer points in
polyhedra, June 11 -- June 15, 2006, Snowbird, U
- …