4 research outputs found

    An antisense oligodeoxynucleotide to lipocortin 1 reverses the inhibitory actions of dexamethasone on the release of adrenocorticotropin from rat pituitary tissue in vitro.

    No full text
    Our previous studies have demonstrated that lipocortin 1 (LC1, also called annexin 1) is an important mediator of glucocorticoid action in the neuroendocrine system, particularly with regard to the powerful inhibitory actions of the steroids on the secretion of ACTH and its hypothalamic releasing hormones. In the present study, we have used an antisense oligodeoxynucleotide (ODN) unique to LC1 to investigate further the role of this protein in the regulatory effects of dexamethasone on ACTH release in vitro from rat anterior pituitary cells. Pituitary cells dispersed with collagenase retained their functional and morphological integrity in vitro and sequestered ODNs in a time-dependent manner from the incubation medium. LC1 was readily detected in the cells by Western blot analysis or by immunoprecipitation/autoradiography after preloading with 35S-methionine/cysteine; the bulk of the protein was contained within an intracellular pool but a small amount was attached to the outer cell surface (pericellular). Dexamethasone (100 nm, 2.5 h) initiated de novo synthesis of LC1; it also increased the amount of LC1 in the pericellular pool detected by either method and caused a concomitant decrease in intracellular LC1. The responses to the steroid were prevented by the inclusion in the medium of an LC1 antisense ODN (50 nM, 3.5 h) but the corresponding sense and scrambled ODN sequences were inert. None of the ODN sequences tested influence the expression of annexin 5 in the pituitary tissue. CRH-41 (100 pM-1 mM), forskolin (1 nM-1 mM) and an L-Ca2+-channel opener BAY K8644 (100 pM-1 microM) initiated concentration dependent increases in immunoreactive- (ir-) ACTH release from the pituitary cells that were reduced (P < 0.01) by preincubation with dexamethasone (100 nM, 2.5 h). The inhibitory effects of the steroid were reversed by the LC1 antisense ODN (50 nM, P < 0.01), whereas the LC1 sense and scrambled control sequences (50 nM) were both ineffective in this respect (P > 0.05). The results add further support to the view that the acute inhibitory effects of glucocorticoids on the secretion of ACTH by the pituitary gland are dependent on the generation of lipocortin 1

    Characterization and localization of lipocortin 1-binding sites on rat anterior pituitary cells by fluorescence-activated cell analysis/sorting and electron microscopy.

    No full text
    Lipocortin 1 (LC1) is an important mediator of glucocorticoid action in the anterior pituitary gland, where it appears to act via cell surface binding sites to suppress peptide release. We have exploited a combination of fluorescence-activated cell (FAC) analysis/sorting and electron microscopy to detect, characterize, and localize LC1-binding sites on the surface of dispersed rat anterior pituitary cells, using human recombinant LC1 (hu-r-LC1) as a probe. High affinity (Kd = 14 +/- 3 nM) hu-r-LC1-binding sites were detected on approximately 80% of anterior pituitary cells dispersed with collagenase. The binding characteristics of the ligand resembled those observed in leukocytes, in that it was saturable; concentration, Ca2+, and temperature dependent; and abolished by trypsin. Functional studies demonstrated an excellent correlation between the presence of the cell surface binding protein and the capacity of an anti-LC1 monoclonal antibody to abrogate the inhibitory actions of dexamethasone (10 nM) on the release of ACTH initiated in vitro by CRH-41 (1 nM). Morphological analysis of cells harvested by FAC sorting showed that 1) somatotrophs, corticotrophs, lactotrophs, thyrotrophs, and gonadotrophs were all included in the population expressing LC1 binding sites; and 2) the LC1-binding sites assume a punctate distribution across the cell surface. These data show that anterior pituitary cells express high affinity surface LC1-binding protein(s); they thus provide further evidence for a specific membrane mechanism of action of LC1 in regulating the endocrine function of the anterior pituitary

    A second update on mapping the human genetic architecture of COVID-19

    Get PDF
    corecore