167 research outputs found
Private Graphon Estimation for Sparse Graphs
We design algorithms for fitting a high-dimensional statistical model to a
large, sparse network without revealing sensitive information of individual
members. Given a sparse input graph , our algorithms output a
node-differentially-private nonparametric block model approximation. By
node-differentially-private, we mean that our output hides the insertion or
removal of a vertex and all its adjacent edges. If is an instance of the
network obtained from a generative nonparametric model defined in terms of a
graphon , our model guarantees consistency, in the sense that as the number
of vertices tends to infinity, the output of our algorithm converges to in
an appropriate version of the norm. In particular, this means we can
estimate the sizes of all multi-way cuts in .
Our results hold as long as is bounded, the average degree of grows
at least like the log of the number of vertices, and the number of blocks goes
to infinity at an appropriate rate. We give explicit error bounds in terms of
the parameters of the model; in several settings, our bounds improve on or
match known nonprivate results.Comment: 36 page
Revealing Network Structure, Confidentially: Improved Rates for Node-Private Graphon Estimation
Motivated by growing concerns over ensuring privacy on social networks, we
develop new algorithms and impossibility results for fitting complex
statistical models to network data subject to rigorous privacy guarantees. We
consider the so-called node-differentially private algorithms, which compute
information about a graph or network while provably revealing almost no
information about the presence or absence of a particular node in the graph.
We provide new algorithms for node-differentially private estimation for a
popular and expressive family of network models: stochastic block models and
their generalization, graphons. Our algorithms improve on prior work, reducing
their error quadratically and matching, in many regimes, the optimal nonprivate
algorithm. We also show that for the simplest random graph models ( and
), node-private algorithms can be qualitatively more accurate than for
more complex models---converging at a rate of
instead of . This result uses a new extension lemma
for differentially private algorithms that we hope will be broadly useful
First to Market is not Everything: an Analysis of Preferential Attachment with Fitness
In this paper, we provide a rigorous analysis of preferential attachment with
fitness, a random graph model introduced by Bianconi and Barabasi. Depending on
the shape of the fitness distribution, we observe three distinct phases: a
first-mover-advantage phase, a fit-get-richer phase and an innovation-pays-off
phase
- …