42,790 research outputs found

    Diffusion approximation for a processor sharing queue in heavy traffic

    Get PDF
    Consider a single server queue with renewal arrivals and i.i.d. service times in which the server operates under a processor sharing service discipline. To describe the evolution of this system, we use a measure valued process that keeps track of the residual service times of all jobs in the system at any given time. From this measure valued process, one can recover the traditional performance processes, including queue length and workload. We show that under mild assumptions, including standard heavy traffic assumptions, the (suitably rescaled) measure valued processes corresponding to a sequence of processor sharing queues converge in distribution to a measure valued diffusion process. The limiting process is characterized as the image under an appropriate lifting map, of a one-dimensional reflected Brownian motion. As an immediate consequence, one obtains a diffusion approximation for the queue length process of a processor sharing queue

    Monetary Policy and Public Finances: Inflation Targets in a New Perspective

    Get PDF
    This paper examines how the private sector, the monetary authority, and the fiscal authority interact and concludes that unrestricted central bank independence may not be an optimal way to collect seigniorage revenues or stabilize supply shocks. Moreover, the paper shows that the implementation of an optimal inflation target results in optimal shares of government finances--seigniorage, taxes, and the spending shortfall--from society's point of view but still involves suboptimal stabilization. Even if price stability is the sole central bank objective, a positive inflation target has important implications for the government's finances, as well as for stabilization. Copyright 1999, International Monetary Fund

    Invariance of fluid limits for the Shortest Remaining Processing Time and Shortest Job First policies

    Full text link
    We consider a single-server queue with renewal arrivals and i.i.d. service times, in which the server employs either the preemptive Shortest Remaining Processing Time (SRPT) policy, or its non-preemptive variant, Shortest Job First (SJF). We show that for given stochastic primitives (initial condition, arrival and service processes), the model has the same fluid limit under either policy. In particular, we conclude that the well-known queue length optimality of preemptive SRPT is also achieved, asymptotically on fluid scale, by the simpler-to-implement SJF policy. We also conclude that on fluid scale, SJF and SRPT achieve the same performance with respect to response times of the longest-waiting jobs in the system.Comment: 24 page

    Heavy traffic limit for a processor sharing queue with soft deadlines

    Full text link
    This paper considers a GI/GI/1 processor sharing queue in which jobs have soft deadlines. At each point in time, the collection of residual service times and deadlines is modeled using a random counting measure on the right half-plane. The limit of this measure valued process is obtained under diffusion scaling and heavy traffic conditions and is characterized as a deterministic function of the limiting queue length process. As special cases, one obtains diffusion approximations for the lead time profile and the profile of times in queue. One also obtains a snapshot principle for sojourn times.Comment: Published at http://dx.doi.org/10.1214/105051607000000014 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Casimir Scaling and String Breaking in G(2) Gluodynamics

    Full text link
    We study the potential energy between static charges in G(2) gluodynamics in three and four dimensions. Our work is based on an efficient local hybrid Monte-Carlo algorithm and a multi-level L\"uscher-Weisz algorithm with exponential error reduction to accurately measure expectation values of Wilson- and Polyakov loops. Both in three and four dimensions we show that at intermediate scales the string tensions for charges in various G(2)-representations scale with the second order Casimir. In three dimensions Casimir scaling is confirmed within one percent for charges in representations of dimensions 7, 14, 27, 64, 77, 77', 182 and 189 and in 4 dimensions within 5 percent for charges in representions of dimensions 7, 14, 27 and 64. In three dimensions we detect string breaking for charges in the two fundamental representations. The scale for string breaking agrees very well with the mass of the created pair of glue-lumps.Comment: 20 pages, 17 figure
    corecore