12,599 research outputs found

    The relationship between polar mesospheric clouds and their background atmosphere as observed by Odin-SMR and Odin-OSIRIS

    Get PDF
    In this study the properties of polar mesospheric clouds (PMCs) and the background atmosphere in which they exist are studied using measurements from two instruments, OSIRIS and SMR, on board the Odin satellite. The data comes from a set of tomographic measurements conducted by the satellite during 2010 and 2011. The expected ice mass density and cloud frequency for conditions of thermodynamic equilibrium, calculated using the temperature and water vapour as measured by SMR, are compared to the ice mass density and cloud frequency as measured by OSIRIS. We find that assuming thermodynamic equilibrium reproduces the seasonal, latitudinal and vertical variations in ice mass density and cloud frequency, but with a high bias of a factor of 2 in ice mass density. To investigate this bias, we use a simple ice particle growth model to estimate the time it would take for the observed clouds to sublimate completely and the time it takes for these clouds to reform. We find a difference in the median sublimation time (1.8 h) and the reformation time (3.2 h) at peak cloud altitudes (82-84 km). This difference implies that temperature variations on these timescales have a tendency to reduce the ice content of the clouds, possibly explaining the high bias of the equilibrium model. Finally, we detect and are, for the first time, able to positively identify cloud features with horizontal scales of 100 to 300 km extending far below the region of supersaturation (>2 km). Using the growth model, we conclude these features cannot be explained by sedimentation alone and suggest that these events may be an indication of strong vertical transport

    What Fraction of Boron-8 Solar Neutrinos arrive at the Earth as a nu_2 mass eigenstate?

    Full text link
    We calculate the fraction of B^8 solar neutrinos that arrive at the Earth as a nu_2 mass eigenstate as a function of the neutrino energy. Weighting this fraction with the B^8 neutrino energy spectrum and the energy dependence of the cross section for the charged current interaction on deuteron with a threshold on the kinetic energy of the recoil electrons of 5.5 MeV, we find that the integrated weighted fraction of nu_2's to be 91 \pm 2 % at the 95% CL. This energy weighting procedure corresponds to the charged current response of the Sudbury Neutrino Observatory (SNO). We have used SNO's current best fit values for the solar mass squared difference and the mixing angle, obtained by combining the data from all solar neutrino experiments and the reactor data from KamLAND. The uncertainty on the nu_2 fraction comes primarily from the uncertainty on the solar delta m^2 rather than from the uncertainty on the solar mixing angle or the Standard Solar Model. Similar results for the Super-Kamiokande experiment are also given. We extend this analysis to three neutrinos and discuss how to extract the modulus of the Maki-Nakagawa-Sakata mixing matrix element U_{e2} as well as place a lower bound on the electron number density in the solar B^8 neutrino production region.Comment: 23 pages, 8 postscript figures, latex. Dedicated to the memory of John Bahcall who championed solar neutrinos for many lonely year

    Morphology of High-Multiplicity Events in Heavy Ion Collisions

    Full text link
    We discuss opportunities that may arise from subjecting high-multiplicity events in relativistic heavy ion collisions to an analysis similar to the one used in cosmology for the study of fluctuations of the Cosmic Microwave Background (CMB). To this end, we discuss examples of how pertinent features of heavy ion collisions including global characteristics, signatures of collective flow and event-wise fluctuations are visually represented in a Mollweide projection commonly used in CMB analysis, and how they are statistically analyzed in an expansion over spherical harmonic functions. If applied to the characterization of purely azimuthal dependent phenomena such as collective flow, the expansion coefficients of spherical harmonics are seen to contain redundancies compared to the set of harmonic flow coefficients commonly used in heavy ion collisions. Our exploratory study indicates, however, that these redundancies may offer novel opportunities for a detailed characterization of those event-wise fluctuations that remain after subtraction of the dominant collective flow signatures. By construction, the proposed approach allows also for the characterization of more complex collective phenomena like higher-order flow and other sources of fluctuations, and it may be extended to the characterization of phenomena of non-collective origin such as jets.Comment: Matches version accepted for publication in Physical Review C. 13 pages, 9 figure

    Sampling rare fluctuations of height in the Oslo ricepile model

    Full text link
    We have studied large deviations of the height of the pile from its mean value in the Oslo ricepile model. We sampled these very rare events with probabilities of order 10−10010^{-100} by Monte Carlo simulations using importance sampling. These simulations check our qualitative arguement [Phys. Rev. E, {\bf 73}, 021303, 2006] that in steady state of the Oslo ricepile model, the probability of large negative height fluctuations Δh=−αL\Delta h=-\alpha L about the mean varies as exp⁥(−Îșα4L3)\exp(-\kappa {\alpha}^4 L^3) as L→∞L \to \infty with α\alpha held fixed, and Îș>0\kappa > 0.Comment: 7 pages, 8 figure

    Experimental and numerical studies on the shared activation anchoring of NSMR CFRP applied to RC beams

    Get PDF
    A shared activation anchoring method used for carbon fiber reinforced polymer (CFRP) near surface mounted reinforcement (NSMR) strengthening is hypothesized to provide a mean to exploit the full material capacity and to tailor desired responses. To investigate strengthening efficiency, failure control as well as ductility levels, the developed strengthening system were mounted on reinforced concrete T-beams with a length of 6400 mm. Initial activation stresses of 50% (1100 MPa) and 70% (1540 MPa) were applied to an 8 mm CFRP rod by the anchor system. Then, in some beams finite element simulations were carried out for better understanding the obtained results with regard to the overall structural behaviour. Good correlations between the FE-simulation and tested responses were observed, where a high utilization of the CFRP material (up to 3300MPa) was reached. Installation of the activated system worked well, without premature failure. Additionally it was possible to control the failure development, where intermediate crack de-bonding was achieved when testing the beams with an activation level of approximately 50%, while fibre rupture occurred at the level of 70% activation, thus providing a CFRP strain of approximately 0,02.SFRH/BSAB/150266/2019; S&P Denmark and Reinholdt W. Jorck and Hustrus foundation. FCT, respectively, financed by European Social Fund and by national funds through the FCT/MCTE

    An Entropy Based Method for Local Time-Adaptation of the Spectrogram

    Full text link
    We propose a method for automatic local time-adaptation of the spectrogram of audio signals: it is based on the decomposition of a signal within a Gabor multi-frame through the STFT operator. The sparsity of the analysis in every individual frame of the multi-frame is evaluated through the R\'enyi entropy measures: the best local resolution is determined minimizing the entropy values. The overall spectrogram of the signal we obtain thus provides local optimal resolution adaptively evolving over time. We give examples of the performance of our algorithm with an instrumental sound and a synthetic one, showing the improvement in spectrogram displaying obtained with an automatic adaptation of the resolution. The analysis operator is invertible, thus leading to a perfect reconstruction of the original signal through the analysis coefficients

    Butterfly diagram of a Sun-like star observed using asteroseismology

    Full text link
    Stellar magnetic fields are poorly understood but are known to be important for stellar evolution and exoplanet habitability. They drive stellar activity, which is the main observational constraint on theoretical models for magnetic field generation and evolution. Starspots are the main manifestation of the magnetic fields at the stellar surface. In this study we measure the variation of their latitude with time, called a butterfly diagram in the solar case, for the solar analogue HD 173701 (KIC 8006161). To that effect, we use Kepler data, to combine starspot rotation rates at different epochs and the asteroseismically determined latitudinal variation of the stellar rotation rates. We observe a clear variation of the latitude of the starspots. It is the first time such a diagram is constructed using asteroseismic data.Comment: 8 pages, 4 figures, accepted in A&A Letter

    Simulating spin-3/2 particles at colliders

    Full text link
    Support for interactions of spin-3/2 particles is implemented in the FeynRules and ALOHA packages and tested with the MadGraph 5 and CalcHEP event generators in the context of three phenomenological applications. In the first, we implement a spin-3/2 Majorana gravitino field, as in local supersymmetric models, and study gravitino and gluino pair-production. In the second, a spin-3/2 Dirac top-quark excitation, inspired from compositness models, is implemented. We then investigate both top-quark excitation and top-quark pair-production. In the third, a general effective operator for a spin-3/2 Dirac quark excitation is implemented, followed by a calculation of the angular distribution of the s-channel production mechanism.Comment: 20 pages, 7 figure

    Avalanche Merging and Continuous Flow in a Sandpile Model

    Full text link
    A dynamical transition separating intermittent and continuous flow is observed in a sandpile model, with scaling functions relating the transport behaviors between both regimes. The width of the active zone diverges with system size in the avalanche regime but becomes very narrow for continuous flow. The change of the mean slope, Delta z, on increasing the driving rate, r, obeys Delta z ~ r^{1/theta}. It has nontrivial scaling behavior in the continuous flow phase with an exponent theta given, paradoxically, only in terms of exponents characterizing the avalanches theta = (1+z-D)/(3-D).Comment: Explanations added; relation to other model
    • 

    corecore