208 research outputs found
Self-energy and Self-force in the Space-time of a Thick Cosmic String
We calculate the self-energy and self-force for an electrically charged
particle at rest in the background of Gott-Hiscock cosmic string space-time. We
found the general expression for the self-energy which is expressed in terms of
the matrix of the scattering problem. The self-energy continuously falls
down outward from the string's center with maximum at the origin of the string.
The self-force is repulsive for an arbitrary position of the particle. It tends
to zero in the string's center and also far from the string and it has a
maximum value at the string's surface. The plots of the numerical calculations
of the self-energy and self-force are shown.Comment: 15 pages, 4 Postscript figures, ReVTe
Three Dimensional MHD Wave Propagation and Conversion to Alfven Waves near the Solar Surface. I. Direct Numerical Solution
The efficacy of fast/slow MHD mode conversion in the surface layers of
sunspots has been demonstrated over recent years using a number of modelling
techniques, including ray theory, perturbation theory, differential eigensystem
analysis, and direct numerical simulation. These show that significant energy
may be transferred between the fast and slow modes in the neighbourhood of the
equipartition layer where the Alfven and sound speeds coincide. However, most
of the models so far have been two dimensional. In three dimensions the Alfven
wave may couple to the magneto-acoustic waves with important implications for
energy loss from helioseismic modes and for oscillations in the atmosphere
above the spot. In this paper, we carry out a numerical ``scattering
experiment'', placing an acoustic driver 4 Mm below the solar surface and
monitoring the acoustic and Alfvenic wave energy flux high in an isothermal
atmosphere placed above it. These calculations indeed show that energy
conversion to upward travelling Alfven waves can be substantial, in many cases
exceeding loss to slow (acoustic) waves. Typically, at penumbral magnetic field
strengths, the strongest Alfven fluxes are produced when the field is inclined
30-40 degrees from the vertical, with the vertical plane of wave propagation
offset from the vertical plane containing field lines by some 60-80 degrees.Comment: Accepted for the HELAS II/ SOHO 19/ GONG 2007 Topical Issue of Solar
Physic
Method to compute the stress-energy tensor for the massless spin 1/2 field in a general static spherically symmetric spacetime
A method for computing the stress-energy tensor for the quantized, massless,
spin 1/2 field in a general static spherically symmetric spacetime is
presented. The field can be in a zero temperature state or a non-zero
temperature thermal state. An expression for the full renormalized
stress-energy tensor is derived. It consists of a sum of two tensors both of
which are conserved. One tensor is written in terms of the modes of the
quantized field and has zero trace. In most cases it must be computed
numerically. The other tensor does not explicitly depend on the modes and has a
trace equal to the trace anomaly. It can be used as an analytic approximation
for the stress-energy tensor and is equivalent to other approximations that
have been made for the stress-energy tensor of the massless spin 1/2 field in
static spherically symmetric spacetimes.Comment: 34 pages, no figure
Analytical approximation of the stress-energy tensor of a quantized scalar field in static spherically symmetric spacetimes
Analytical approximations for and of a
quantized scalar field in static spherically symmetric spacetimes are obtained.
The field is assumed to be both massive and massless, with an arbitrary
coupling to the scalar curvature, and in a zero temperature vacuum state.
The expressions for and are divided into
low- and high-frequency parts. The contributions of the high-frequency modes to
these quantities are calculated for an arbitrary quantum state. As an example,
the low-frequency contributions to and are
calculated in asymptotically flat spacetimes in a quantum state corresponding
to the Minkowski vacuum (Boulware quantum state). The limits of the
applicability of these approximations are discussed.Comment: revtex4, 17 pages; v2: three references adde
An Introduction to Data Analysis in Asteroseismology
A practical guide is presented to some of the main data analysis concepts and
techniques employed contemporarily in the asteroseismic study of stars
exhibiting solar-like oscillations. The subjects of digital signal processing
and spectral analysis are introduced first. These concern the acquisition of
continuous physical signals to be subsequently digitally analyzed. A number of
specific concepts and techniques relevant to asteroseismology are then
presented as we follow the typical workflow of the data analysis process,
namely, the extraction of global asteroseismic parameters and individual mode
parameters (also known as peak-bagging) from the oscillation spectrum.Comment: Lecture presented at the IVth Azores International Advanced School in
Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars
and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta,
Azores Islands, Portugal in July 201
Precipitation regionalization, anomalies and drought occurrence in the Yucatan Peninsula, Mexico
© 2020 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society. Climate change projections have identified the Yucatan Peninsula as being vulnerable to increasing drought. Understanding spatial and temporal precipitation variability and drought occurrence are therefore important. Drought monitoring in Mexico has been carried out only relatively recently and often without considering the long-term variability in both droughts and precipitation. This research explores the spatio-temporal variability of precipitation and occurrence of droughts at a much finer spatial resolution and over a longer temporal period than previous studies. Using statistical (cluster analysis and standardized precipitation index) and geostatistical (kriging) techniques, maps of precipitation and droughts are generated for the period 1980â2011. These show that whilst many previous studies have regarded the Yucatan Peninsula as a homogenous region with respect to precipitation, there are actually four distinctive clusters of precipitation amount, showing climatic variability across the Peninsula. The analyses also show that droughts in the Peninsula are regionalised. Twelve-month Standardized Precipitation Indices (SPI), calculated for individual stations and for precipitation surfaces, reveal distinct patterns of spatial and temporal variability. SPI surfaces indicate the occurrence of major droughts in 1981, 1986â1987, 1994, 1996, 2003, 2004 and 2009, but these rarely affect the whole Yucatan Peninsula uniformly. Wetter years, such as 1983, 1984, 1988, 1992, 1995, 2002 and 2005 sometimes reflect the impact of individual extreme events, such as hurricane Isidore in 2002. Our results show that drought can be regionalised, thus enhancing the quality of information about droughts in the area and providing evidence and support for future drought mitigation and environmental protection. These methods could usefully be applied elsewhere
Improved search for solar chameleons with a GridPix detector at CAST
We report on a new search for solar chameleons with the CERN Axion Solar Telescope (CAST). A GridPix detector was used to search for soft X-ray photons in the energy range from 200 eV to 10 keV from converted solar chameleons. No significant excess over the expected background has been observed in the data taken in 2014 and 2015. We set an improved limit on the chameleon photon coupling, beta(gamma) less than or similar to 5.7 x 10(10) for 1 < beta(m) < 10(6) at 95% C.L. improving our previous results by a factor two and for the first time reaching sensitivity below the solar luminosity bound for tachocline magnetic fields up to 12.5 T
Black Hole Thermodynamics and Statistical Mechanics
We have known for more than thirty years that black holes behave as
thermodynamic systems, radiating as black bodies with characteristic
temperatures and entropies. This behavior is not only interesting in its own
right; it could also, through a statistical mechanical description, cast light
on some of the deep problems of quantizing gravity. In these lectures, I review
what we currently know about black hole thermodynamics and statistical
mechanics, suggest a rather speculative "universal" characterization of the
underlying states, and describe some key open questions.Comment: 35 pages, Springer macros; for the Proceedings of the 4th Aegean
Summer School on Black Hole
- âŠ