502 research outputs found
Three Dimensional MHD Wave Propagation and Conversion to Alfven Waves near the Solar Surface. I. Direct Numerical Solution
The efficacy of fast/slow MHD mode conversion in the surface layers of
sunspots has been demonstrated over recent years using a number of modelling
techniques, including ray theory, perturbation theory, differential eigensystem
analysis, and direct numerical simulation. These show that significant energy
may be transferred between the fast and slow modes in the neighbourhood of the
equipartition layer where the Alfven and sound speeds coincide. However, most
of the models so far have been two dimensional. In three dimensions the Alfven
wave may couple to the magneto-acoustic waves with important implications for
energy loss from helioseismic modes and for oscillations in the atmosphere
above the spot. In this paper, we carry out a numerical ``scattering
experiment'', placing an acoustic driver 4 Mm below the solar surface and
monitoring the acoustic and Alfvenic wave energy flux high in an isothermal
atmosphere placed above it. These calculations indeed show that energy
conversion to upward travelling Alfven waves can be substantial, in many cases
exceeding loss to slow (acoustic) waves. Typically, at penumbral magnetic field
strengths, the strongest Alfven fluxes are produced when the field is inclined
30-40 degrees from the vertical, with the vertical plane of wave propagation
offset from the vertical plane containing field lines by some 60-80 degrees.Comment: Accepted for the HELAS II/ SOHO 19/ GONG 2007 Topical Issue of Solar
Physic
Correlates of Premenstrual Dysphoria in Help-seeking Women
Comparisons were made between the premenstrual changes reported by nontreatment-seekers (NTS) (n = 32) and those of treatment-seekers (TS) (n = 52). The Premenstrual Assessment Form Luteal Phase and Follicular Phase versions were completed and the Beck Depression Inventory, the Automatic Thoughts Questionnaire and the State-Trait Anxiety Inventory were completed at both the luteal and follicular phases. Prospective daily ratings were made for two treatment cycles on the Daily Ratings Form and TS were screened for a mood-disorder history. Using the commonly cited 30% decrease in dysphoric levels from the pre- to postmenstrual phases as the criterion of prospective confirmation, women with prospectively confirmed dysphoria (PMD +) were not significantly more symptomatic than those without prospective dysphoric confirmation (PMD -). However, TS were more symptomatic than NTS on measures of depression, anxiety and frequency of negative automatic thoughts but not on mood behaviour and physical changes reflected in the PAF scales. No demographic differences were found between TS and NTS. Results did not support the issue of requiring `confirmation' of self-reports within a help-seeking group or the use of the 30% criterion in particular. Findings further suggest that the 95-item PAF may be inadequate in differentiating TS from others
Some Aspects of Rotational and Magnetic Energies for a Hierarchy of Celestial Objects
Celestial objects, from earth like planets to clusters of galaxies, possess
angular momentum and magnetic fields. Here we compare the rotational and
magnetic energies of a whole range of these celestial objects together with
their gravitational self energies and find a number of interesting
relationships. The celestial objects, due to their magnetic fields, also posses
magnetic moments. The ratio of magnetic moments of these objects with the
nuclear magnetic moments also exhibits interesting trends. We also compare
their gyromagnetic ratio which appears to fall in a very narrow range for the
entire hierarchy of objects. Here we try to understand the physical aspects
implied by these observations and the origin of these properties in such a wide
range of celestial objects, spanning some twenty orders in mass, magnetic field
and other parameters.Comment: 12 pages, 37 equation
Building a reduced dictionary of relevant perfusion patterns from CEUS data for the classification of testis lesions
Radical orchifunicolectomy has traditionally been the main clinical treatment for small testicular masses (STMs); however STMs represent a constantly increasing and often incidental finding. Since many of them result benign, a more conservative testis-sparing surgery was proposed, but it requires a preliminary differentiation between benign and malignant masses: this however remains challenging. Although common understanding in radiology and oncology is that perfusion patterns might provide a useful information about the type of masses, no guidelines or consensus is available for the differentiation of STMs. We propose to build a dictionary of relevant perfusion patterns, extracted using non-negative matrix factorization on pixel-wise time-intensity curves from contrast-enhanced ultrasound data. When data from a lesion are reconstructed using this dictionary, a vector containing the frequency of utilization of each pattern can be used as a tissue signature. Using this signature, a support vector machine classifier has been trained, and the cross validated accuracy reached 100% in our pilot cohort
Interaction of a brane with a moving bulk black hole
We study the interaction of an n-dimensional topological defect (n-brane)
described by the Nambu-Goto action with a higher-dimensional Schwarzschild
black hole moving in the bulk spacetime. We derive the general form of the
perturbation equations for an n-brane in the weak field approximation and solve
them analytically in the most interesting cases. We specially analyze
applications to brane world models. We calculate the induced geometry on the
brane generated by a moving black hole. From the point of view of a brane
observer, this geometry can be obtained by solving (n+1)-dimensional Einstein's
equations with a non-vanishing right hand side. We calculate the effective
stress-energy tensor corresponding to this `shadow-matter'. We explicitly show
that there exist regions on the brane where a brane observer sees an apparent
violation of energy conditions. We also study the deflection of light
propagating in the region of influence of this `shadow matter'.Comment: version accepted for publication in Phys. Rev.
Constructing and Characterising Solar Structure Models for Computational Helioseismology
In this paper, we construct background solar models that are stable against
convection, by modifying the vertical pressure gradient of Model S
(Christensen-Dalsgaard et al., 1996, Science, 272, 1286) relinquishing
hydrostatic equilibrium. However, the stabilisation affects the eigenmodes that
we wish to remain as close to Model S as possible. In a bid to recover the
Model S eigenmodes, we choose to make additional corrections to the sound speed
of Model S before stabilisation. No stabilised model can be perfectly
solar-like, so we present three stabilised models with slightly different
eigenmodes. The models are appropriate to study the f and p1 to p4 modes with
spherical harmonic degrees in the range from 400 to 900. Background model CSM
has a modified pressure gradient for stabilisation and has eigenfrequencies
within 2% of Model S. Model CSM_A has an additional 10% increase in sound speed
in the top 1 Mm resulting in eigenfrequencies within 2% of Model S and
eigenfunctions that are, in comparison with CSM, closest to those of Model S.
Model CSM_B has a 3% decrease in sound speed in the top 5 Mm resulting in
eigenfrequencies within 1% of Model S and eigenfunctions that are only
marginally adversely affected. These models are useful to study the interaction
of solar waves with embedded three-dimensional heterogeneities, such as
convective flows and model sunspots. We have also calculated the response of
the stabilised models to excitation by random near-surface sources, using
simulations of the propagation of linear waves. We find that the simulated
power spectra of wave motion are in good agreement with an observed SOHO/MDI
power spectrum. Overall, our convectively stabilised background models provide
a good basis for quantitative numerical local helioseismology. The models are
available for download from http://www.mps.mpg.de/projects/seismo/NA4/.Comment: 35 pages, 23 figures Changed title Updated Figure 1
Logarithmic Corrections to Rotating Extremal Black Hole Entropy in Four and Five Dimensions
We compute logarithmic corrections to the entropy of rotating extremal black
holes using quantum entropy function i.e. Euclidean quantum gravity approach.
Our analysis includes five dimensional supersymmetric BMPV black holes in type
IIB string theory on T^5 and K3 x S^1 as well as in the five dimensional CHL
models, and also non-supersymmetric extremal Kerr black hole and slowly
rotating extremal Kerr-Newmann black holes in four dimensions. For BMPV black
holes our results are in perfect agreement with the microscopic results derived
from string theory. In particular we reproduce correctly the dependence of the
logarithmic corrections on the number of U(1) gauge fields in the theory, and
on the angular momentum carried by the black hole in different scaling limits.
We also explain the shortcomings of the Cardy limit in explaining the
logarithmic corrections in the limit in which the (super)gravity description of
these black holes becomes a valid approximation. For non-supersymmetric
extremal black holes, e.g. for the extremal Kerr black hole in four dimensions,
our result provides a stringent testing ground for any microscopic explanation
of the black hole entropy, e.g. Kerr/CFT correspondence.Comment: LaTeX file, 50 pages; v2: added extensive discussion on the relation
between boundary condition and choice of ensemble, modified analysis for
slowly rotating black holes, all results remain unchanged, typos corrected;
v3: minor additions and correction
Unravelling the size distribution of social groups with information theory on complex networks
The minimization of Fisher's information (MFI) approach of Frieden et al.
[Phys. Rev. E {\bf 60} 48 (1999)] is applied to the study of size distributions
in social groups on the basis of a recently established analogy between scale
invariant systems and classical gases [arXiv:0908.0504]. Going beyond the ideal
gas scenario is seen to be tantamount to simulating the interactions taking
place in a network's competitive cluster growth process. We find a scaling rule
that allows to classify the final cluster-size distributions using only one
parameter that we call the competitiveness. Empirical city-size distributions
and electoral results can be thus reproduced and classified according to this
competitiveness, which also allows to correctly predict well-established
assessments such as the "six-degrees of separation", which is shown here to be
a direct consequence of the maximum number of stable social relationships that
one person can maintain, known as Dunbar's number. Finally, we show that scaled
city-size distributions of large countries follow the same universal
distribution
NeuroSpeech
NeuroSpeech is a software for modeling pathological speech signals considering different speech dimensions: phonation, articulation, prosody, and intelligibility. Although it was developed to model dysarthric speech signals from Parkinson's patients, its structure allows other computer scientists or developers to include other pathologies and/or measures. Different tasks can be performed: (1) modeling of the signals considering the aforementioned speech dimensions, (2) automatic discrimination of Parkinson's vs. non-Parkinson's, and (3) prediction of the neurological state according to the Unified Parkinson's Disease Rating Scale (UPDRS) score. The prediction of the dysarthria level according to the Frenchay Dysarthria Assessment scale is also provided
- …