2 research outputs found

    Evolution of Two Receptors detecting the Same Pheromone Compound in Crop Pest Moths of the Genus Spodoptera

    No full text
    In moths, mate finding strongly rely on the detection of sex pheromones by pheromone receptors. Any modification in the functional properties of these receptors can have a drastic impact on reproduction. In the course of characterizing candidate pheromone receptors in the noctuid moth Spodoptera littoralis, we expressed them in Drosophila olfactory sensory neurons and stimulated them with a large panel of moth pheromone compounds. We found that two pheromone receptors detect (Z,E)-9,12-14:OAc, a minor component of the female pheromone blend. Whereas SlitOR6 is highly specific to this component, SlitOR13 is less sensitive and not strictly specific as it also detects (Z)9-14:OAc, another minor component of the sex pheromone. Interestingly, SlitOR13 expression is restricted to the distal part of male antennae, where we could identify a novel functional class of pheromone-sensitive neurons whose response spectrum matches that of SlitOR13. Based on a phylogenetic analysis of Lepidoptera pheromone receptors, we built an evolutionary scenario in which four different paralogous lineages emerged through gene duplications. The ability to bind (Z,E)-9,12-14:OAc appeared independently within three of these lineages, and an analysis of selective pressures revealed sites under positive selection that could have played a role in the emergence of functional properties of OR6 and OR13 in Spodoptera species

    Shifts in sensory neuron identity parallel differences in pheromone preference in the European corn borer

    No full text
    Pheromone communication relies on highly specific signals sent and received between members of the same species. However, how pheromone specificity is determined in moth olfactory circuits remains unknown. Here we provide the first glimpse into the mechanism that generates this specificity in Ostrinia nubilalis. In Ostrinia nubilalis it was found that a single locus causes strain-specific, diametrically opposed preferences for a 2-component pheromone blend. Previously we found pheromone preference to be correlated with the strain and hybrid-specific relative antennal response to both pheromone components. This led to the current study, in which we detail the underlying mechanism of this differential response, through chemotopically mapping of the pheromone detection circuit in the antenna. We determined that both strains and their hybrids have swapped the neuronal identity of the pheromone-sensitive neurons co-housed within a single sensillum. Furthermore, neurons that mediate behavioral antagonism surprisingly co-express up to five pheromone receptors, mirroring the concordantly broad tuning to heterospecific pheromones. This appears as possible evolutionary adaptation that could prevent cross attraction to a range of heterospecific signals, while keeping the pheromone detection system to its simplest tripartite setup
    corecore