17 research outputs found

    Altered Trek-1 Function in Sortilin Deficient Mice Results in Decreased Depressive-Like Behavior

    Get PDF
    The background potassium channel TREK-1 has been shown to be a potent target for depression treatment. Indeed, deletion of this channel in mice resulted in a depression resistant phenotype. The association of TREK-1 with the sorting protein sortilin prompted us to investigate the behavior of mice deleted from the gene encoding sortilin (Sort1−/−). To characterize the consequences of sortilin deletion on TREK-1 activity, we combined behavioral, electrophysiological and biochemical approaches performed in vivo and in vitro. Analyses of Sort1−/− mice revealed that they display: (1) a corticosterone-independent anxiety-like behavior, (2) a resistance to depression as demonstrated by several behavioral tests, and (3) an increased activity of dorsal raphe nucleus neurons. All these properties were associated with TREK-1 action deficiency consequently to a decrease of its cell surface expression and to the modification of its electrophysiological activity. An increase of BDNF expression through activation of the furin-dependent constitutive pathway as well as an increase of the activated BDNF receptor TrkB were in agreement with the decrease of depressive-like behavior of Sort1−/− mice. Our results demonstrate that the TREK-1 expression and function are altered in the absence of sortilin confirming the importance of this channel in the regulation on the mood as a crucial target to treat depression

    A Human TREK-1/HEK Cell Line: A Highly Efficient Screening Tool for Drug Development in Neurological Diseases

    Get PDF
    TREK-1 potassium channels are involved in a number of physiopathological processes such as neuroprotection, pain and depression. Molecules able to open or to block these channels can be clinically important. Having a cell model for screening such molecules is of particular interest. Here, we describe the development of the first available cell line that constituvely expresses the TREK-1 channel. The TREK-1 channel expressed by the h-TREK-1/HEK cell line has conserved all its modulation properties. It is opened by stretch, pH, polyunsaturated fatty acids and by the neuroprotective molecule, riluzole and it is blocked by spadin or fluoxetine. We also demonstrate that the h-TREK-1/HEK cell line is protected against ischemia by using the oxygen-glucose deprivation model

    Signalling by G-protein coupled receptors is required in early xenopus development

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Impairement of HT29 Cancer Cells Cohesion by the Soluble Form of Neurotensin Receptor-3.

    No full text
    International audienceThe neurotensin (NT) receptor-3 (NTSR3), also called sortilin is a multifunctional protein localized at the intracellular and plasma membrane level. The extracellular domain of NTSR3 (sNTSR3) is released by shedding from several cell lines including colonic cancer cells. This soluble protein acts as an active ligand through its ability to bind, to be internalized in the human adenocarcinoma epithelial HT29 cells and to stimulate the PI3 kinase pathway. The aim of this study was to investigate cellular responses induced by sNTSR3 in HT29 cells. The cellular functions of sNTSR3 were monitored by immunofluocytochemistry, electron microscopy and quantitative PCR in order to characterize the cell shape and the expression of adhesion proteins. We evidenced that sNTSR3 significantly regulates the cellular morphology as well as the cell-cell and the cell-matrix adherens properties by decreasing the expession of several integrins and by modifying the structure of desmosomes. Altogether, these properties lead to an increase of cell detachment upon sNTSR3 treatment on HT29, HCT116 and SW620 cancer cells. Our results indicate that sNTSR3 may induce the first phase of a process which weaken HT29 epithelial properties including desmosome architecture, cell spreading, and initiation of cell separation, all events which could be responsible for cancer metastasis

    INCREASED BRAIN NEUROTENSIN AND NTSR2 LEAD TO WEAK NOCICEPTION IN NTSR3/SORTILIN KNOCKOUT MICE

    Get PDF
    The neuropeptide neurotensin (NT) elicits numerous pharmacological effects through three different receptors (NTSR1, NTSR2 and NTSR3 also called sortilin). Pharmacological approaches and generation of NTSR1 and NTSR2-deficient mice allowed to determine the NT-induced antipsychotic like behaviour, the inhibitory of weak fear memory and the nociceptive signaling in a rat formalin tonic pain model to NTSR1. Conversely, the effects of NT on thermal and tonic nociceptions were mediated by NTSR2. However, the role of NTSR3/sortilin on the neurotensinergic system was not investigated. Here, by using C57Bl/6J mouse model in which the gene coding for NTSR3/sortilin has been inactivated, we observed a modification of the expression of both NTSR2 and NT itself. Quantitative PCR and protein expression using Western blot analyses and AlphaLisaTM technology resulted in the observation that brain NTSR2 as well as brain and blood NT were two fold increased in KO mice leading to a resistance of these mice to thermal and chemical pain. These data confirm that NTSR3/sortilin interacts with other NT receptors (ie ; NTSR2) and that its deletion modifies also the affinity of this receptor to NT

    A novel nucleotide receptor in Xenopus activates the cAMP second messenger pathway

    Get PDF
    AbstractWe describe a Xenopus P2Y receptor that shares only weak homology with members of the mammalian P2Y family, being most similar to human P2Y11. When activated by nucleotide analogs, it stimulates both calcium and cAMP mobilization pathways, a feature unique, among mammalian P2Y receptors, to P2Y11. Activity can be blocked by compounds known to act as antagonists of mammalian P2Y11. Genomic synteny between Xenopus and mammals suggests that the novel gene is a true ortholog of P2Y11. Xenopus P2Y11 is transcribed during embryonic development, beginning at gastrulation, and is enriched in the developing nervous system

    Serum sortilin-derived propeptides concentrations are decreased in major depressive disorder patients

    No full text
    Abstract BACKGROUND: Despite intense research on mechanisms underlying the depressive pathophysiology, reliable biomarkers to assess antidepressant treatment response are still lacking. Since the sortilin-derived propeptide (PE) displays potent antidepressant activities and can be measured in the blood of rodents, we wondered whether in human its seric level can vary between patients affected by major depressive disorder (MDD) and healthy controls and after antidepressant treatment. METHODS: By using a specific dosing method, characterized by structure-recognition analysis with various synthesized PE analogues, we conducted a translational study to test whether blood levels of PE are under pathophysiological regulation and could serve as biomarkers of the depression state. RESULTS: The serum concentration of PE, a peptide displaying potent antidepressant activities in rodents, is decreased in patients affected by major depressive disorder (MDD) when compared to healthy non-psychiatric controls cohort (p=0.035). Interestingly, pharmacological antidepressant treatments restore normal PE levels. LIMITATIONS: The limitation of the study concerns the relatively small patient samples that could negatively affect the likelihood that a nominally statistically significant finding actually reflects a true effect. CONCLUSIONS: The longitudinal quantification of the serum PE concentration could assist psychiatrists in the diagnosis of antidepressant response efficacy, and the need to modify the therapeutic strategy
    corecore