35 research outputs found

    Association of ethanol with lipid membranes containing cholesterol, sphingomyelin and ganglioside: a titration calorimetry study

    Get PDF
    AbstractThe association of ethanol at physiologically relevant concentrations with lipid bilayers of different lipid composition has been investigated by use of isothermal titration calorimetry (ITC). The liposomes examined were composed of combinations of lipids commonly found in neural cell membranes: dimyristoyl phosphatidylcholine (DMPC), ganglioside (GM1), sphingomyelin and cholesterol. The calorimetric results show that the interaction of ethanol with fluid lipid bilayers is endothermic and strongly dependent on the lipid composition of the liposomes. The data have been used to estimate partitioning coefficients for ethanol into the fluid lipid bilayer phase and the results are discussed in terms of the thermodynamics of partitioning. The presence of 10 mol% sphingomyelin or ganglioside in DMPC liposomes enhances the partitioning coefficient by a factor of 3. Correspondingly, cholesterol (30 mol%) reduces the partitioning coefficient by a factor of 3. This connection between lipid composition and partitioning coefficient correlates with in vivo observations. Comparison of the data with the molecular structure of the lipid molecules suggests that ethanol partitioning is highly sensitive to changes in the lipid backbone (glycerol or ceramide) while it appears much less sensitive to the nature of the head group

    Mærk varmen

    No full text

    Thermodynamics of alcohol-lipid bilayer interactions:application of a binding model

    Get PDF
    AbstractSeveral recent reports have provided evidence that interactions of small alcohols with lipid bilayer membranes are dominated by adsorption to the membrane–water interface. This mode of interaction is better modeled by binding models than solution theories. In the present study, alcohol–membrane interactions are examined by applying the ‘solvent exchange model’ [J.A. Schellmann, Biophys. Chem. 37 (1990) 121] to calorimetric measurements. Binding constants (in mole fraction units) for small alcohols to unilamellar liposomes of dimyristoyl phosphatidylcholine were found to be close to unity, and in contrast to partitioning coefficients they decrease through the sequence ethanol, 1-propanol, 1-butanol. Thus, the direct (intrinsic) affinity of the bilayer for these alcohols is lower the longer the acyl chain. A distinction between binding and partitioning is discussed, and it is demonstrated that a high concentration of solute in the bilayer (large partitioning coefficients) can be obtained even in cases of weak binding. Other results from the model suggest that the number of binding sites on the lipid bilayer interface is 1–3 times the number of lipid molecules and that the binding is endothermic with an enthalpy change of 10–15 kJ/mol. Close to the main phase transition of the lipid bilayer the results suggest the presence of two distinct classes of binding sites: ‘normal’ sites similar to those observed at higher temperatures, and a lower number of high-affinity sites with binding constants larger by one or two orders of magnitude. The occurrence of high-affinity sites is discussed with respect to fluctuating gel and fluid domains in bilayer membranes close to the main phase transition
    corecore