29 research outputs found

    Phylogenetic analyses of the polyprotein coding sequences of serotype O foot-and-mouth disease viruses in East Africa: evidence for interserotypic recombination

    Get PDF
    BACKGROUND: Foot-and-mouth disease (FMD) is endemic in East Africa with the majority of the reported outbreaks attributed to serotype O virus. In this study, phylogenetic analyses of the polyprotein coding region of serotype O FMD viruses from Kenya and Uganda has been undertaken to infer evolutionary relationships and processes responsible for the generation and maintenance of diversity within this serotype. FMD virus RNA was obtained from six samples following virus isolation in cell culture and in one case by direct extraction from an oropharyngeal sample. Following RT-PCR, the single long open reading frame, encoding the polyprotein, was sequenced. RESULTS: Phylogenetic comparisons of the VP1 coding region showed that the recent East African viruses belong to one lineage within the EA-2 topotype while an older Kenyan strain, K/52/1992 is a representative of the topotype EA-1. Evolutionary relationships between the coding regions for the leader protease (L), the capsid region and almost the entire coding region are monophyletic except for the K/52/1992 which is distinct. Furthermore, phylogenetic relationships for the P2 and P3 regions suggest that the K/52/1992 is a probable recombinant between serotypes A and O. A bootscan analysis of K/52/1992 with East African FMD serotype A viruses (A21/KEN/1964 and A23/KEN/1965) and serotype O viral isolate (K/117/1999) revealed that the P2 region is probably derived from a serotype A strain while the P3 region appears to be a mosaic derived from both serotypes A and O. CONCLUSIONS: Sequences of the VP1 coding region from recent serotype O FMDVs from Kenya and Uganda are all representatives of a specific East African lineage (topotype EA-2), a probable indication that hardly any FMD introductions of this serotype have occurred from outside the region in the recent past. Furthermore, evidence for interserotypic recombination, within the non-structural protein coding regions, between FMDVs of serotypes A and O has been obtained. In addition to characterization using the VP1 coding region, analyses involving the non-structural protein coding regions should be performed in order to identify evolutionary processes shaping FMD viral populations

    Laboratory capacity for diagnosis of foot-and-mouth disease in Eastern Africa: implications for the progressive control pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate diagnosis is pertinent to any disease control programme. If Eastern Africa is to work towards control of foot-and-mouth disease (FMD) using the Progressive Control Pathway for FMD (PCP-FMD) as a tool, then the capacity of national reference laboratories (NRLs) mandated to diagnose FMD should match this task. This study assessed the laboratory capacity of 14 NRLs of the Eastern Africa Region Laboratory Network member countries using a semi-structured questionnaire and retrospective data from the World Reference Laboratory for FMD annual reports and Genbank® through National Centre for Biotechnology Information for the period 2006–2010.</p> <p>Results</p> <p>The questionnaire response rate was 13/14 (93%). Twelve out of the 13 countries/regions had experienced at least one outbreak in the relevant five year period. Only two countries (Ethiopia and Kenya) had laboratories at biosecurity level 3 and only three (Ethiopia, Kenya and Sudan) had identified FMD virus serotypes for all reported outbreaks. Based on their own country/region assessment, 12/13 of these countries /regions were below stage 3 of the PCP-FMD. Quarantine (77%) and vaccination (54%) were the major FMD control strategies employed. The majority (12/13) of the NRLs used serological techniques to diagnose FMD, seven used antigen ELISA and three of these (25%) also used molecular techniques which were the tests most frequently requested from collaborating laboratories by the majority (69%) of the NRLs. Only 4/13 (31%) participated in proficiency testing for FMD. Four (31%) laboratories had no quality management systems (QMS) in place and where QMS existed it was still deficient, thus, none of the laboratories had achieved accreditation for FMD diagnosis.</p> <p>Conclusions</p> <p>This study indicates that FMD diagnostic capacity in Eastern Africa is still inadequate and largely depends on antigen and antibody ELISAs techniques undertaken by the NRLs. Hence, for the region to progress on the PCP-FMD, there is need to: implement regional control measures, improve the serological diagnostic test performance and laboratory capacity of the NRLs (including training of personnel as well as upgrading of equipment and methods, especially strengthening the molecular diagnostic capacity), and to establish a regional reference laboratory to enforce QMS and characterization of FMD virus containing samples.</p

    Low topotype diversity of recent foot-and-mouth disease virus serotypes O and A from districts located along the Uganda and Tanzania border

    Get PDF
    Foot-and-mouth disease (FMD) is one of the most important livestock diseases in East Africa with outbreaks reported annually that cause severe economic losses. It is possible to control disease using vaccination, but antigenic matching of the vaccine to circulating strains is critical. To determine the relationship between foot-and-mouth disease viruses circulating in districts along the Uganda and Tanzanian border between 2016 and 2017 and currently used vaccines, phylogenetic analysis of the full VP1 virus sequences was carried out on samples collected from both sides of the border. A total of 43 clinical samples were collected from animals exhibiting signs of FMD and VP1 sequences generated from 11 of them. Eight out of the 11 sequences obtained belonged to serotype O and three belonged to serotype A. The serotype O sequences obtained showed limited nucleotide divergence (average of 4.9%) and belonged to topotype East Africa-2, whereas the most common O-type vaccine strain used in the region (O/KEN/77/78) belonged to East Africa-1. The serotype A viruses belonged to topotype Africa-G1 (average nucleotide divergence 7.4%), as did vaccine strain K5/1980. However, vaccine strain K35/1980 belonged to Africa G VII with an average sequence divergence of 20.5% from the study sequences. The genetic distances between current vaccine strains and circulating field strains underscores the crucial need for regular vaccine matching and the importance of collaborative efforts for better control of FMD along this border area

    Unrecognized circulation of SAT 1 foot-and-mouth disease virus in cattle herds around Queen Elizabeth National Park in Uganda

    Get PDF
    BACKGROUND: Foot-and-mouth disease (FMD) is endemic in Uganda in spite of the control measures used. Various aspects of the maintenance and circulation of FMD viruses (FMDV) in Uganda are not well understood; these include the role of the African buffalo (Syncerus caffer) as a reservoir for FMDV. To better understand the epidemiology of FMD at the livestock-wildlife-interface, samples were collected from young, unvaccinated cattle from 24 pastoral herds that closely interact with wildlife around Queen Elizabeth National Park in Uganda, and analysed for evidence of FMDV infection. RESULTS: In total, 37 (15 %) of 247 serum samples had detectable antibodies against FMDV non-structural proteins (NSPs) using a pan-serotypic assay. Within these 37 sera, antibody titres ≥ 80 against the structural proteins of serotypes O, SAT 1, SAT 2 and SAT 3 were detected by ELISA in 5, 7, 4 and 3 samples, respectively, while neutralizing antibodies were only detected against serotype O in 3 samples. Two FMDV isolates, with identical VP1 coding sequences, were obtained from probang samples from clinically healthy calves from the same herd and are serotype SAT 1 (topotype IV (EA-I)). Based on the VP1 coding sequences, these viruses are distinct from previous cattle and buffalo SAT 1 FMDV isolates obtained from the same area (19–30 % nucleotide difference) and from the vaccine strain (TAN/155/71) used within Uganda (26 % nucleotide difference). Eight herds had only one or a few animals with antibodies against FMDV NSPs while six herds had more substantial evidence of prior infection with FMDV. There was no evidence for exposure to FMDV in the other ten herds. CONCLUSIONS: The two identical SAT 1 FMDV VP1 sequences are distinct from former buffalo and cattle isolates from the same area, thus, transmission between buffalo and cattle was not demonstrated. These new SAT 1 FMDV isolates differed significantly from the vaccine strain used to control Ugandan FMD outbreaks, indicating a need for vaccine matching studies. Only six herds had clear serological evidence for exposure to O and SAT 1 FMDV. Scattered presence of antibodies against FMDV in other herds may be due to the occasional introduction of animals to the area or maternal antibodies from past infection and/or vaccination. The evidence for asymptomatic FMDV infection has implications for disease control strategies in the area since this obstructs early disease detection that is based on clinical signs in FMDV infected animals. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12917-015-0616-1) contains supplementary material, which is available to authorized users

    The role of African buffalos (syncerus caffer) in the maintenance of foot-and-mouth disease in Uganda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To study the role of African buffalos (<it>Syncerus caffer</it>) in the maintenance of foot-and-mouth disease in Uganda, serum samples were collected from 207 African buffalos, 21 impalas (<it>Aepyceros melampus</it>), 1 giraffe (<it>Giraffa camelopardalis</it>), 1 common eland (<it>Taurotragus oryx</it>), 7 hartebeests (<it>Alcelaphus buselaphus</it>) and 5 waterbucks (<it>Kobus ellipsiprymnus</it>) from four major National Parks in Uganda between 2005 and 2008. Serum samples were screened to detect antibodies against foot-and-mouth disease virus (FMDV) non-structural proteins (NSP) using the Ceditest<sup>® </sup>FMDV NS ELISA. Solid Phase Blocking ELISAs (SPBE) were used to determine the serotype-specificity of antibodies against the seven serotypes of FMDV among the positive samples. Virus isolation and sequencing were undertaken to identify circulating viruses and determine relatedness between them.</p> <p>Results</p> <p>Among the buffalo samples tested, 85% (95% CI = 80-90%) were positive for antibodies against FMDV non-structural proteins while one hartebeest sample out of seven (14.3%; 95% CI = -11.6-40.2%) was the only positive from 35 other wildlife samples from a variety of different species. In the buffalo, high serotype-specific antibody titres (≥ 80) were found against serotypes O (7/27 samples), SAT 1 (23/29 samples), SAT 2 (18/32 samples) and SAT 3 (16/30 samples). Among the samples titrated for antibodies against the four serotypes O, SAT 1, SAT 2 and SAT 3, 17/22 (77%; CI = 59.4-94.6%) had high titres against at least two serotypes.</p> <p>FMDV isolates of serotypes SAT 1 (1 sample) and SAT 2 (2 samples) were obtained from buffalo probang samples collected in Queen Elizabeth National Park (QENP) in 2007. Sequence analysis and comparison of VP1 coding sequences showed that the SAT 1 isolate belonged to topotype IV while the SAT 2 isolates belonged to different lineages within the East African topotype X.</p> <p>Conclusions</p> <p>Consistent detection of high antibody titres in buffalos supports the view that African buffalos play an important role in the maintenance of FMDV infection within National Parks in Uganda. Both SAT 1 and SAT 2 viruses were isolated, and serological data indicate that it is also likely that FMDV serotypes O and SAT 3 may be present in the buffalo population. Detailed studies should be undertaken to define further the role of wildlife in the epidemiology of FMDV in East Africa.</p

    Uganda's experience in Ebola virus disease outbreak preparedness, 2018-2019.

    Get PDF
    BACKGROUND: Since the declaration of the 10th Ebola Virus Disease (EVD) outbreak in DRC on 1st Aug 2018, several neighboring countries have been developing and implementing preparedness efforts to prevent EVD cross-border transmission to enable timely detection, investigation, and response in the event of a confirmed EVD outbreak in the country. We describe Uganda's experience in EVD preparedness. RESULTS: On 4 August 2018, the Uganda Ministry of Health (MoH) activated the Public Health Emergency Operations Centre (PHEOC) and the National Task Force (NTF) for public health emergencies to plan, guide, and coordinate EVD preparedness in the country. The NTF selected an Incident Management Team (IMT), constituting a National Rapid Response Team (NRRT) that supported activation of the District Task Forces (DTFs) and District Rapid Response Teams (DRRTs) that jointly assessed levels of preparedness in 30 designated high-risk districts representing category 1 (20 districts) and category 2 (10 districts). The MoH, with technical guidance from the World Health Organisation (WHO), led EVD preparedness activities and worked together with other ministries and partner organisations to enhance community-based surveillance systems, develop and disseminate risk communication messages, engage communities, reinforce EVD screening and infection prevention measures at Points of Entry (PoEs) and in high-risk health facilities, construct and equip EVD isolation and treatment units, and establish coordination and procurement mechanisms. CONCLUSION: As of 31 May 2019, there was no confirmed case of EVD as Uganda has continued to make significant and verifiable progress in EVD preparedness. There is a need to sustain these efforts, not only in EVD preparedness but also across the entire spectrum of a multi-hazard framework. These efforts strengthen country capacity and compel the country to avail resources for preparedness and management of incidents at the source while effectively cutting costs of using a "fire-fighting" approach during public health emergencies

    Molecular characterization and phylogenetic study of peste des petits ruminants viruses from North central States of Nigeria

    No full text
    <p>Abstract</p> <p>Background</p> <p>Peste des petits ruminants is an endemic disease of sheep and goats in Nigeria and vaccination has been the method of control but sporadic outbreaks have been reported. This study was carried out to characterize PPR viruses from outbreaks in 2007 and 2009 from Kaduna and Plateau States.</p> <p>Results</p> <p>Of the 33 clinical samples analysed, 51.52% (n = 17) were positive for F protein gene primers (F1/F2). All the samples had a sequence similarity of 98-100% among them and 92-97% with the reference vaccine (Nig 75/1) strain. The deduced amino acid homology ranges between 96.3-99.7%. Phylogenetically all the Nigerian sequences cluster with Nig 75/1 and Nig 76/1 in lineage 1.</p> <p>Conclusions</p> <p>PPR is still a problem in Kaduna and Plateau States of Nigeria. The strains involved were genetically closely related to the vaccine strain (Nig 75/1) used in the country. Based on this study, the continued outbreaks in the Country is not due to the efficacy of the vaccine. Therefore, to achieve effective control and possibly eradication of PPR in Nigeria, the current control strategies should be revisited.</p
    corecore