83 research outputs found

    ALMA polarimetry measures magnetically aligned dust grains in the torus of NGC 1068

    Get PDF
    The obscuring structure surrounding active galactic nuclei (AGN) can be explained as a dust and gas flow cycle that fundamentally connects the AGN with their host galaxies. This structure is believed to be associated with dusty winds driven by radiation pressure. However, the role of magnetic fields, which are invoked in almost all models for accretion onto a supermassive black hole and outflows, is not thoroughly studied. Here we report the first detection of polarized thermal emission by means of magnetically aligned dust grains in the dusty torus of NGC 1068 using ALMA Cycle 4 polarimetric dust continuum observations (0.07"0.07", 4.24.2 pc; 348.5 GHz, 860860 μ\mum). The polarized torus has an asymmetric variation across the equatorial axis with a peak polarization of 3.7±0.53.7\pm0.5\% and position angle of 109±2109\pm2^{\circ} (B-vector) at 8\sim8 pc east from the core. We compute synthetic polarimetric observations of magnetically aligned dust grains assuming a toroidal magnetic field and homogeneous grain alignment. We conclude that the measured 860 μ\mum continuum polarization arises from magnetically aligned dust grains in an optically thin region of the torus. The asymmetric polarization across the equatorial axis of the torus arises from 1) an inhomogeneous optical depth, and 2) a variation of the velocity dispersion, i.e. variation of the magnetic field turbulence at sub-pc scales, from the eastern to the western region of the torus. These observations and modeling constrain the torus properties beyond spectral energy distribution results. This study strongly supports that magnetic fields up to a few pc contribute to the accretion flow onto the active nuclei.Comment: 19 pages, 11 figures (Accepted for Publication to ApJ

    Understanding the impact of dog ownership on autistic adults: implications for mental health and suicide prevention

    Get PDF
    Mental health problems and suicide are more frequent in autistic adults than general population. Dog ownership can improve human well-being. This study aimed to generate a framework of well-being outcomes for dog-related activities in autistic adults and compare it to the framework generated for a general adult population. Thirty-six autistic dog owners (18-74 years old, 18 males) from diverse UK regions were interviewed and transcripts thematically analysed. 16.7% reported that their dogs prevented them from taking their own lives, mainly due to the dog's affection and the need to care for the animal. Close dog-owner interactions (e.g., cuddling, walking, dog's presence) were the most frequent activities improving emotions/moods and life functioning, whereas routine-like activities (e.g., feeding the animal) particularly enhanced life functioning. Well-being worsening was mainly linked to dog behaviour problems, dog poor health/death and obligations to the dog. Despite some negatives associated with ownership, having a dog could improve the well-being of many autistic adults and assist suicide prevention strategies in this high-risk group. The framework was consistent with that generated previously, indicating its robustness and the potential opportunity to focus on dog-related activities rather than the vague concept of “ownership” when considering the impact of ownership on well-being

    Polarimetric modeling and assessment of science cases for Giant Magellan Telescope-Polarimeter (GMT-Pol)

    Full text link
    Polarization observations through the next-generation large telescopes will be invaluable for exploring the magnetic fields and composition of jets in AGN, multi-messenger transients follow-up, and understanding interstellar dust and magnetic fields. The 25m Giant Magellan Telescope (GMT) is one of the next-generation large telescopes and is expected to have its first light in 2029. The telescope consists of a primary mirror and an adaptive secondary mirror comprising seven circular segments. The telescope supports instruments at both Nasmyth as well as Gregorian focus. However, none of the first or second-generation instruments on GMT has the polarimetric capability. This paper presents a detailed polarimetric modeling of the GMT for both Gregorian and folded ports for astronomical B-K filter bands and a field of view of 5 arc minutes. At 500nm, The instrumental polarization is 0.1% and 3% for the Gregorian and folded port, respectively. The linear to circular crosstalk is 0.1% and 30% for the Gregorian and folded ports, respectively. The Gregorian focus gives the GMT a significant competitive advantage over TMT and ELT for sensitive polarimetry, as these telescopes support instruments only on the Nasmyth platform. We also discuss a list of polarimetric science cases and assess science case requirements vs. the modeling results. Finally, we discuss the possible routes for polarimetry with GMT and show the preliminary optical design of the GMT polarimeter.Comment: 13 pages, 5 figures,SPIE Optics + Photonics 2023 conference proceeding, Paper no 12690-2
    corecore