13 research outputs found

    Real-time Semiparametric Regression via Sequential Monte Carlo

    Full text link
    We develop and describe online algorithms for performing real-time semiparametric regression analyses. Earlier work on this topic is in Luts, Broderick & Wand (J. Comput. Graph. Statist., 2014) where online mean field variational Bayes was employed. In this article we instead develop sequential Monte Carlo approaches to circumvent well-known inaccuracies inherent in variational approaches. Even though sequential Monte Carlo is not as fast as online mean field variational Bayes, it can be a viable alternative for applications where the data rate is not overly high. For Gaussian response semiparametric regression models our new algorithms share the online mean field variational Bayes property of only requiring updating and storage of sufficient statistics quantities of streaming data. In the non-Gaussian case accurate real-time semiparametric regression requires the full data to be kept in storage. The new algorithms allow for new options concerning accuracy/speed trade-offs for real-time semiparametric regression

    Variable Porous Electrode Compression for Redox Flow Battery Systems

    No full text
    Vanadium redox flow batteries (VRFBs) offer great promise as a safe, cost effective means of storing electrical energy on a large scale and will certainly have a part to play in the global transition to renewable energy. To unlock the full potential of VRFB systems, however, it is necessary to improve their power density. Unconventional stack design shows encouraging possibilities as a means to that end. Presented here is the novel concept of variable porous electrode compression, which simulations have shown to deliver a one third increase in minimum limiting current density together with a lower pressure drop when compared to standard uniform compression cell designs

    Enhanced Reactant Distribution in Redox Flow Cells

    No full text
    Redox flow batteries (RFBs), provide a safe and cost-effective means of storing energy at grid-scale, and will play an important role in the decarbonization of global electricity networks. Several approaches have been explored to improve their efficiency and power density, and recently, cell geometry modification has shown promise in efforts to address mass transport limitations which affect electrochemical and overall system performance. Flow-by electrode configurations have demonstrated significant power density improvements in laboratory testing, however, flow-through designs with conductive felt remain the standard at commercial scale. Concentration gradients exist within these cells, limiting their performance. A new concept of redistributing reactants within the flow frame is introduced in this paper. This research shows a 60% improvement in minimum V3+ concentration within simulated vanadium redox flow battery (VRB/VRFB) cells through the application of static mixers. The enhanced reactant distribution showed a cell voltage improvement by reducing concentration overpotential, suggesting a pathway forward to increase limiting current density and cycle efficiencies in RFBs

    Vanadium Oxygen Fuel Cell Utilising High Concentration Electrolyte

    No full text
    A vanadium oxygen fuel cell is a modified form of a conventional vanadium redox flow battery (VRFB) where the positive electrolyte (VO2+/VO2+ couple) is replaced by the oxygen reduction (ORR) process. This potentially allows for a significant improvement in energy density and has the added benefit of overcoming the solubility limits of V (V) at elevated temperatures, while also allowing the vanadium negative electrolyte concentration to increase above 3 M. In this paper, a vanadium oxygen fuel cell with vanadium electrolytes with a concentration of up to 3.6 M is reported with preliminary results presented for different electrodes over a range of current densities. Using precipitation inhibitors, the concentration of vanadium can be increased considerably above the commonly used 2 M limit, leading to improved energy density

    Review of material research and development for vanadium redox flow battery applications

    No full text
    The vanadium redox flow battery (VRB) is one of the most promising electrochemical energy storage systems deemed suitable for a wide range of renewable energy applications that are emerging rapidly to reduce the carbon footprint of electricity generation. Though the Generation 1 Vanadium redox flow battery (G1 VRB) has been successfully implemented in a number of field trials and demonstration projects around the world, it suffers from low energy density that limits its use to stationary applications. Extensive research is thus being carried out to improve its energy density and enhance its performance to enable mobile applications while simultaneously trying to minimize the cost by employing cost effective stack materials and effectively controlling the current operating procedures. The vast bulk of this research was conducted at the University of New South Wales (UNSW) in Sydney during the period 1985–2005, with a large number of other research groups contributing to novel membrane and electrode material development since then. This paper presents a historical overview of materials research and development for the VRB at UNSW, highlighting some of the significant findings that have contributed to improving the battery's performance over the years. Relevant work in this field by other research groups in recent times has also been reviewed and discussed
    corecore