22 research outputs found

    Potential Vorticity Evolution of a Protoplanetary Disk with An Embedded Protoplanet

    Full text link
    We present two-dimensional inviscid hydrodynamic simulations of a protoplanetary disk with an embedded planet, emphasizing the evolution of potential vorticity (the ratio of vorticity to density) and its dependence on numerical resolutions. By analyzing the structure of spiral shocks made by the planet, we show that progressive changes of the potential vorticity caused by spiral shocks ultimately lead to the excitation of a secondary instability. We also demonstrate that very high numerical resolution is required to both follow the potential vorticity changes and identify the location where the secondary instability is first excited. Low-resolution results are shown to give the wrong location. We establish the robustness of a secondary instability and its impact on the torque onto the planet. After the saturation of the instability, the disk shows large-scale non-axisymmetry, causing the torque on the planet to oscillate with large amplitude. The impact of the oscillating torque on the protoplanet's migration remains to be investigated.Comment: 17 pages total with 9 figures (Fig.4,5,9 are in .jpg), accepted to Ap

    Keeping It Real: Revisiting a Real-Space Approach to Running Ensembles of Cosmological N-body Simulations

    Full text link
    In setting up initial conditions for ensembles of cosmological N-body simulations there are, fundamentally, two choices: either maximizing the correspondence of the initial density field to the assumed fourier-space clustering or, instead, matching to real-space statistics and allowing the DC mode (i.e. overdensity) to vary from box to box as it would in the real universe. As a stringent test of both approaches, I perform ensembles of simulations using power law and a "powerlaw times a bump" model inspired by baryon acoustic oscillations (BAO), exploiting the self-similarity of these initial conditions to quantify the accuracy of the matter-matter two-point correlation results. The real-space method, which was originally proposed by Pen 1997 and implemented by Sirko 2005, performed well in producing the expected self-similar behavior and corroborated the non-linear evolution of the BAO feature observed in conventional simulations, even in the strongly-clustered regime (sigma8 >= 1). In revisiting the real-space method championed by Sirko 2005, it was also noticed that this earlier study overlooked an important integral constraint correction to the correlation function in results from the conventional approach that can be important in LambdaCDM simulations with Lbox == Lbox / 10. Rectifying this shows that the fourier space and real space methods are about equally accurate and efficient for modeling the evolution and growth of the correlation function, contrary to previous claims. An appendix provides a useful independent-of-epoch analytic formula for estimating the importance of the integral constraint bias on correlation function measurements in LambdaCDM simulations.Comment: 28 pages, 7 figures, substantial improvements throughou
    corecore