75 research outputs found
Recommended from our members
Predicting space climate change
The recent decline in the open magnetic flux of the Sun heralds the end of the Grand Solar Maximum (GSM) that has persisted throughout the space age, during which the largestâfluence Solar Energetic Particle (SEP) events have been rare and Galactic Cosmic Ray (GCR) fluxes have been relatively low. In the absence of a predictive model of the solar dynamo, we here make analogue forecasts by studying past variations of solar activity in order to evaluate how longâterm change in space climate may influence the hazardous energetic particle environment of the Earth in the future. We predict the probable future variations in GCR flux, nearâEarth interplanetary magnetic field (IMF), sunspot number, and the probability of large SEP events, all deduced from cosmogenic isotope abundance changes following 24 GSMs in a 9300âyear record
Recommended from our members
Ionospheric and geomagnetic responses to changes in IMF B_Z: a superposed epoch study
Superposed epoch studies have been carried out in order to determine the ionospheric response at mid-latitudes to southward turnings of the interplanetary magnetic field (IMF). This is compared with the geomagnetic response, as seen in the indices K p, AE and Dst. The solar wind, IMF and geomagnetic data used were hourly averages from the years 1967â1989 and thus cover a full 22-year cycle in the solar magnetic field. These data were divided into subsets, determined by the magnitudes of the southward turnings and the concomitant increase in solar wind pressure. The superposed epoch studies were carried out using the time of the southward turning as time zero. The response of the mid-latitude ionosphere is studied by looking at the F-layer critical frequencies, f o F2, from hourly soundings by the Slough ionosonde and their deviation from the monthly median values, ÎŽf o F2. For the southward turnings with a change in B z of ÎŽB z > 11.5 nT accompanied by a solar wind dynamic pressure P exceeding 5 nPa, the F region critical frequency, f o F2, shows a marked decrease, reaching a minimum value about 20 h after the southward turning. This recovers to pre-event values over the subsequent 24 h, on average. The Dst index shows the classic storm-time decrease to about â60 nT. Four days later, the index has still to fully recover and is at about â25 nT. Both the K p and AE indices show rises before the southward turnings, when the IMF is strongly northward but the solar wind dynamic pressure is enhanced. The average AE index does register a clear isolated pulse (averaging 650 nT for 2 h, compared with a background peak level of near 450 nT at these times) showing enhanced energy deposition at high latitudes in substorms but, like K p, remains somewhat enhanced for several days, even after the average IMF has returned to zero after 1 day. This AE background decays away over several days as the Dst index recovers, indicating that there is some contamination of the currents observed at the AE stations by the continuing enhanced equatorial ring current. For data averaged over all seasons, the critical frequencies are depressed at Slough by 1.3 MHz, which is close to the lower decile of the overall distribution of ÎŽf o Fl values. Taking 30-day periods around summer and winter solstice, the largest depression is 1.6 and 1.2 MHz, respectively. This seasonal dependence is confirmed by a similar study for a Southern Hemisphere station, Argentine Island, giving peak depressions of 1.8 MHz and 0.5 MHz for summer and winter. For the subset of turnings where ÎŽB z > 11.5 nT and P †5 nPa, the response of the geomagnetic indices is similar but smaller, while the change in ÎŽf o F2 has all but disappeared. This confirms that the energy deposited at high latitudes, which leads to the geomagnetic and ionospheric disturbances following a southward turning of the IMF, increases with the energy density (dynamic pressure) of the solar wind flow. The magnitude of all responses are shown to depend on ÎŽB z . At Slough, the peak depression always occurs when Slough rotates into the noon sector. The largest ionospheric response is for southward turnings seen between 15â21 UT
Recommended from our members
The development of a space climatology: 1. solar-wind magnetosphere coupling as a function of timescale and the effect of data gaps
Different terrestrial space weather indicators (such as geomagnetic indices, transpolar voltage, and ring current particle content) depend on different âcoupling functionsâ (combinations of near-Earth solar wind parameters) and previous studies also reported a dependence on the averaging timescale, {\tau}. We study the relationships of the am and SME geomagnetic indices to the power input into the magnetosphere P_{\alpha}, estimated using the optimum coupling exponent {\alpha} for a range of {\tau} between 1 min and 1 year. The effect of missing data is investigated by introducing synthetic gaps into near-continuous data and the best method for dealing with them when deriving the coupling function, is formally defined. Using P_{\alpha}, we show that gaps in data recorded before 1995 have introduced considerable errors into coupling functions. From the near-continuous solar wind data for 1996-2016, we find {\alpha} = 0.44 plus/minus 0.02 and no significant evidence that {\alpha} depends on {\tau}, yielding P_{\alpha} = B^0.88 Vsw^1.90 (mswNsw)^0.23 sin4({\theta}/2), where B is the Interplanetary Magnetic Field (IMF), Nsw the solar wind number density, msw its mean ion mass, Vsw its velocity and {\theta} is the IMF clock angle in the Geocentric Solar Magnetospheric reference frame. Values of P_{\alpha} that are accurate to within plus/minus 5% for 1996-2016 have an availability of 83.8% and the correlation between P_{\alpha} and am for these data is shown to be 0.990 (between 0.972 and 0.997 at the 2{\sigma} uncertainty level), 0.897 plus/minus 0.004, and 0.790 plus/minus 0.03, for {\tau} of 1 year, 1 day and 3 hours, respectively, and that between P_{alpha} and SME at {\tau} of 1 min. is 0.7046 plus/minus 0.0004
Recommended from our members
The characteristics of the magnetopause reconnection X-line deduced from low-altitude satellite observations of cusp ions
We present an analysis of a âquasi-steadyâ cusp ion dispersion signature observed at low altitudes. We reconstruct the field-parallel part of the Cowley-D ion distribution function, injected into the open LLBL in the vicinity of the reconnection X-line. From this we find the field-parallel magnetosheath flow at the X-line was only 20 ± 60 km sâ1, placing the reconnection site close to the flow streamline which is perpendicular to the magnetosheath field. Using interplanetary data and assuming the subsolar magnetopause is in pressure balance, we derive a wealth of information about the X-line, including: the density, flow, magnetic field and AlfvĂ©n speed of the magnetosheath; the magnetic shear across the X-line; the de-Hoffman Teller speed with which field lines emerge from the X-line; the magnetospheric field; and the ion transmission factor across the magnetopause. The results indicate that some heating takes place near the X-line as the ions cross the magnetopause, and that sheath densities may be reduced in a plasma depletion layer. We also compute the reconnection rate. Despite its quasi-steady appearance on an ion spectrogram, this cusp is found to reveal a large pulse of enhanced reconnection rate
Recommended from our members
Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr â Part 2: A new reconstruction of the interplanetary magnetic field
We present a new reconstruction of the interplanetary magnetic field (IMF, B) for 1846â2012 with a full analysis of errors, based on the homogeneously constructed IDV(1d)composite of geomagnetic activity presented in Part 1 (Lockwood et al., 2013a). Analysis of the dependence of the commonly used geomagnetic indices on solar wind parameters is presented which helps explain why annual means of interdiurnal range data, such as the new composite, depend only on the IMF with only a very weak influence of the solar wind flow speed. The best results are obtained using a polynomial (rather than a linear) fit of the form B = Ï Â· (IDV(1d) â ÎČ)α with best-fit coefficients Ï = 3.469, ÎČ = 1.393 nT, and α = 0.420. The results are contrasted with the reconstruction of the IMF since 1835 by Svalgaard and Cliver (2010)
The effects of age on skeletal muscle and the phosphocreatine energy system: can creatine supplementation help older adults
Creatine supplementation has been found to significantly increase muscle strength and hypertrophy in young adults (†35 yr) particularly when consumed in conjunction with a resistance training regime. Literature examining the efficacy of creatine supplementation in older adults (55-82 yr) suggests creatine to promote muscle strength and hypertrophy to a greater extent than resistance training alone. The following is a review of literature reporting on the effects of creatine supplementation on intramuscular high energy phosphates, skeletal muscle morphology and quality of life in older adults. Results suggest creatine supplementation to be a safe, inexpensive and effective nutritional intervention, particularly when consumed in conjunction with a resistance training regime, for slowing the rate of muscle wasting that is associated with aging. Physicians should strongly consider advising older adults to supplement with creatine and to begin a resistance training regime in an effort to enhance skeletal muscle strength and hypertrophy, resulting in enhanced quality of life
Recommended from our members
On the origins and timescales of geoeffective IMF
Southward Interplanetary Magnetic Field (IMF) in the Geocentric Solar Magnetospheric (GSM) reference frame is the key element that controls the level of space-weather disturbance in Earthâs magnetosphere, ionosphere and thermosphere. We discuss the relation of this geoeffective IMF component to the IMF in the Geocentric Solar Ecliptic (GSE) frame and, using the almost continuous interplanetary data for 1996-2015 (inclusive), we show that large geomagnetic storms are always associated with strong southward, out-of-ecliptic field in the GSE frame: dipole tilt effects, that cause the difference between the southward field in the GSM and GSE frames, generally make only a minor contribution to these strongest storms. The time-of-day/time-of-year response patterns of geomagnetic indices and the optimum solar wind coupling function are both influenced by the timescale of the index response. We also study the occurrence spectrum of large out-of-ecliptic field and show that for one-hour averages it is, surprisingly, almost identical in ICMEs (Interplanetary Coronal Mass Ejections), around CIRs/SIRs (Corotating and Stream Interaction Regions) and in the âquietâ solar wind (which is shown to be consistent with the effect of weak SIRs). However, differences emerge when the timescale over which the field remains southward is considered: for longer averaging timescales the spectrum is broader inside ICMEs, showing that these events generate longer intervals of strongly southward average IMF and consequently stronger geomagnetic storms. The behavior of out-of-ecliptic field with timescale is shown to be very similar to that of deviations from the predicted Parker spiral orientation, suggesting the two share common origins
The development of a space climatology: 3. Models of the evolution of distributions of space weather variables with timescale
We study how the probability distribution functions of power input to the magnetosphere Pα and of the geomagnetic ap and Dst indices vary with averaging timescale, , between 3 hours and 1 year. From this we develop and present algorithms to empirically model the distributions for a given and a given annual mean value. We show that lognormal distributions work well for ap, but because of the spread of Dst for low activity conditions, the optimum formulation for Dst leads to distributions better described by something like the Weibull formulation. Annual means can be estimated using telescope observations of sunspots and modelling, and so this allows the distributions to be estimated at any given between 3 hour and 1 year for any of the past 400 years, which is another important step towards a useful space weather climatology. The algorithms apply to the core of the distributions and can be used to predict the occurrence rate of âlargeâ events (in the top 5% of activity levels): they may contain some, albeit limited, information relevant to characterizing the much rarer âsuperstormâ events with extreme value statistics. The algorithm for the Dst index is the more complex one because, unlike ap, Dst can take on either sign and future improvements to it are suggested
Low-frequency ventilation during cardiopulmonary bypass for lung protection:A randomized controlled trial
OBJECTIVE: Pulmonary dysfunction is a common complication in patients undergoing heart surgery. Current clinical practice does not include any specific strategy for lung protection. To compare the anti-inflammatory effects of low-frequency ventilation (LFV), as measured by nuclear factor Îș-light-chain-enhancer of activated B cells (NF-ÎșB) p65 pathway activation, for the entire cardiopulmonary bypass (CPB) vs both lungs left collapsed in patients undergoing coronary artery bypass grafting (CABG). METHODS: Two groups parallel randomized controlled trial. The primary outcome was inflammation measured by NF-ÎșB p65 activation in pre- and post-CPB lung biopsies. Secondary outcomes were additional inflammatory markers in both biopsy tissue and blood. RESULTS: Thirty-seven patients were randomly allocated to LFV (18) and to both lungs left collapsed (19). The mean concentration of NF-ÎșB p65 in the biopsies before chest closure (adjusted for pre-CPB concentration) was higher in the LFV group compared to both lungs left collapsed group but this was not significant (0.102, 95% confidence interval, -0.022 to 0.226, Pâ=â0.104). There were no significant differences between groups in the other inflammatory markers measured in tissue and blood. CONCLUSIONS: In patients undergoing elective CABG, the use of LFV during CPB when compared to both lungs left collapsed does not seem to reduce inflammation in lung biopsies and blood
Recommended from our members
Location and characteristics of the reconnection X line deduced from low-altitude satellite and ground-based observations: 2. Defense Meteorological Satellite Program and European Incoherent Scatter data
We present an analysis of a cusp ion step, observed by the Defense Meteorological Satellite Program (DMSP) F10 spacecraft, between two poleward moving events of enhanced ionospheric electron temperature, observed by the European Incoherent Scatter (EISCAT) radar. From the ions detected by the satellite, the variation of the reconnection rate is computed for assumed distances along the open-closed field line separatrix from the satellite to the X line, do. Comparison with the onset times of the associated ionospheric events allows this distance to be estimated, but with an uncertainty due to the determination of the low-energy cutoff of the ion velocity distribution function, Æ(Îœ). Nevertheless, the reconnection site is shown to be on the dayside magnetopause, consistent with the reconnection model of the cusp during southward interplanetary magnetic field (IMF). Analysis of the time series of distribution function at constant energies, Æ(ts), shows that the best estimate of the distance do is 14.5±2 RE. This is consistent with various magnetopause observations of the signatures of reconnection for southward IMF. The ion precipitation is used to reconstruct the field-parallel part of the Cowley D ion distribution function injected into the open low-latitude boundary layer in the vicinity of the X line. From this reconstruction, the field-aligned component of the magnetosheath flow is found to be only â55±65 km sâ1 near the X line, which means either that the reconnection X line is near the stagnation region at the nose of the magnetosphere, or that it is closely aligned with the magnetosheath flow streamline which is orthogonal to the magnetosheath field, or both. In addition, the sheath AlfvĂ©n speed at the X line is found to be 220±45 km sâ1, and the speed with which newly opened field lines are ejected from the X line is 165±30 km sâ1. We show that the inferred magnetic field, plasma density, and temperature of the sheath near the X line are consistent with a near-subsolar reconnection site and confirm that the magnetosheath field makes a large angle (>58°) with the X line
- âŠ