9 research outputs found

    Stereotactic Body Radiation Therapy for Reirradiation of Localized Adenocarcinoma of the Pancreas

    Get PDF
    AbstractBackgroundLocal control rates are poor in the treatment of pancreatic cancer. We investigated the role of hypofractionated stereotactic body radiation therapy (SBRT) for salvage or boost treatment after conventional doses of external beam radiation therapy.MethodsAll patients treated with SBRT for pancreatic adenocarcinoma at Georgetown University from June 2002 through July 2007 were examined. Eligible patients had prior external beam radiation therapy to the pancreas. Treatment parameters and clinical and radiographic follow-up were evaluated.ResultsTwenty-eight patients were identified who received SBRT after a median prior external beam radiotherapy dose of 50.4 Gy. The median patient age was 63 years old and the median follow-up was 5.9 months. Twelve of fourteen (85.7%) evaluable patients were free from local progression, with three partial responses and nine patients with stable disease. Toxicity consisted of one case of acute Grade II nausea/vomiting, and two cases of Grade III late GI toxicity. The median overall survival was 5.9 months, with 18% survival and 70% freedom from local progression at one year.ConclusionsHypofractionated SBRT reirradiation of localized pancreatic cancer is a well-tolerated treatment. Most patients are free from local progression, albeit with limited follow-up, but overall survival remains poor.Peer Reviewe

    CASTLE Thyroid Tumor: A Case Report and Literature Review

    No full text
    Carcinoma showing thymus-like differentiation is a rare tumor of the thyroid gland, which is structurally similar to thymic tissue. Overall, it has a favorable prognosis. Radiotherapy has been shown to be an effective local treatment, but there have been reports of distant recurrence. It has been suggested that adding chemotherapy may decrease the risk of recurrence. Here, we present a case report of a patient with a large tumor and extrathyroidal extension. The patient was treated with surgery, radiotherapy, and cisplatin with acceptable toxicity. The patient is free of locally recurrent or distant disease at 3 years

    Quantitative clinical outcomes of therapy for head and neck lymphedema

    No full text
    Purpose: Head and neck surgery and radiation cause tissue fibrosis that leads to functional limitations and lymphedema. The objective of this study was to determine whether lymphedema therapy after surgery and radiation for head and neck cancer decreases neck circumference, increases cervical range of motion, and improves pain scores. Methods and materials: A retrospective review of all patients with squamous cell carcinoma of the oral cavity, oropharynx, or larynx who were treated with high-dose radiation therapy at a single center between 2011 and 2012 was performed. Patients received definitive or postoperative radiation for squamous cell carcinoma of the oral cavity, oropharynx, or larynx. Patients were referred to a single, certified, lymphedema therapist with specialty training in head and neck cancer after completion of radiation treatment and healing of acute toxicity (typically 1-3 months). Patients underwent at least 3 months of manual lymphatic decongestion and skilled fibrotic techniques. Circumferential neck measurements and cervical range of motion were measured clinically at 1, 3, 6, 9, and 12 months after completion of radiation therapy. Pain scores were also recorded. Results: Thirty-four consecutive patients were eligible and underwent a median of 6 months of lymphedema therapy (Range, 3-12 months). Clinically measured total neck circumference decreased in all patients with 1 month of treatment. Cervical rotation increased by 30.2% on the left and 27.9% on the right at 1 month and continued to improve up to 44.6% and 55.3%, respectively, at 12 months. Patients undergoing therapy had improved pain scores from 4.3 at baseline to 2.0 after 1 month. Conclusions: Lymphedema therapy is associated with objective improvements in range of motion, neck circumference, and pain scores in the majority of patients

    Development and Characterization of an In Vitro Model for Radiation-Induced Fibrosis.

    No full text
    Radiation-induced fibrosis (RIF) is a major side effect of radiotherapy in cancer patients with no effective therapeutic options. RIF involves excess deposition and aberrant remodeling of the extracellular matrix (ECM) leading to stiffness in tissues and organ failure. Development of preclinical models of RIF is crucial to elucidate the molecular mechanisms regulating fibrosis and to develop therapeutic approaches. In addition to radiation, the main molecular perpetrators of fibrotic reactions are cytokines, including transforming growth factor-β (TGF-β). We hypothesized that human oral fibroblasts would develop an in vitro fibrotic reaction in response to radiation and TGF-β. We demonstrate here that fibroblasts exposed to radiation followed by TGF-β exhibit a fibrotic phenotype with increased collagen deposition, cell proliferation, migration and invasion. In this in vitro model of RIF (RI
    corecore