419 research outputs found

    Exploring the high-pressure materials genome

    Full text link
    A thorough in situ characterization of materials at extreme conditions is challenging, and computational tools such as crystal structural search methods in combination with ab initio calculations are widely used to guide experiments by predicting the composition, structure, and properties of high-pressure compounds. However, such techniques are usually computationally expensive and not suitable for large-scale combinatorial exploration. On the other hand, data-driven computational approaches using large materials databases are useful for the analysis of energetics and stability of hundreds of thousands of compounds, but their utility for materials discovery is largely limited to idealized conditions of zero temperature and pressure. Here, we present a novel framework combining the two computational approaches, using a simple linear approximation to the enthalpy of a compound in conjunction with ambient-conditions data currently available in high-throughput databases of calculated materials properties. We demonstrate its utility by explaining the occurrence of phases in nature that are not ground states at ambient conditions and estimating the pressures at which such ambient-metastable phases become thermodynamically accessible, as well as guiding the exploration of ambient-immiscible binary systems via sophisticated structural search methods to discover new stable high-pressure phases.Comment: 14 pages, 6 figure

    Comparison of two stabilizingsystems of steel structure including the effect of earthquake design

    Get PDF
    Master's thesis in Civil and structural engineering (BYG508

    Stakeholder engagement and knowledge co-creation in water planning:can public participation increase cost-effectiveness?

    Get PDF
    In 2014, a radical shift took place in Danish water planning. Following years of a top-down water planning approach, 23 regional water councils were established to co-create and provide input to Danish authorities on the development of River Basin Management Plans (RBMP). The water councils advised local authorities on the application of measures to improve the physical conditions in Danish streams within a given economic frame. The paper shows the difference the use of water councils (public participation) made by comparing the final water council proposal included in the 2015 RBMP to the RBMPs proposed by the central government (Nature Agency) in 2014. The study concludes that the measures proposed by the water councils will generally deliver better results than the proposed Nature Agency plans, which do not include the same level of participation. Specifically, the water councils with stakeholder involvement proposed a much longer network of streams (3800 km), yielding a better ecological outcome than the shorter stream network (1615 km) proposed by the Nature Agency for the same budget. Having a structured and fixed institutional frame around public participation (top-down meeting bottom-up) can produce cost-effective results, but the results show that cost-effectiveness was not the only deciding factor, and that local circumstances like the practicalities of implementing the measures were also considered when developing the Programmes of Measures. The findings suggest that the use of water councils in water planning has significant advantages, including the fact that the knowledge of local conditions helps to identify efficient solutions at lower costs, which can be useful for administrators, policy-makers, and other stakeholders implementing the Water Framework Directive in years to come
    • …
    corecore