34 research outputs found

    Stepping stability: effects of sensory perturbation

    Get PDF
    BACKGROUND: Few tools exist for quantifying locomotor stability in balance impaired populations. The objective of this study was to develop and evaluate a technique for quantifying stability of stepping in healthy people and people with peripheral (vestibular hypofunction, VH) and central (cerebellar pathology, CB) balance dysfunction by means a sensory (auditory) perturbation test. METHODS: Balance impaired and healthy subjects performed a repeated bench stepping task. The perturbation was applied by suddenly changing the cadence of the metronome (100 beat/min to 80 beat/min) at a predetermined time (but unpredictable by the subject) during the trial. Perturbation response was quantified by computing the Euclidian distance, expressed as a fractional error, between the anterior-posterior center of gravity attractor trajectory before and after the perturbation was applied. The error immediately after the perturbation (Emax), error after recovery (Emin) and the recovery response (Edif) were documented for each participant, and groups were compared with ANOVA. RESULTS: Both balance impaired groups exhibited significantly higher Emax (p = .019) and Emin (p = .028) fractional errors compared to the healthy (HE) subjects, but there were no significant differences between CB and VH groups. Although response recovery was slower for CB and VH groups compared to the HE group, the difference was not significant (p = .051). CONCLUSION: The findings suggest that individuals with balance impairment have reduced ability to stabilize locomotor patterns following perturbation, revealing the fragility of their impairment adaptations and compensations. These data suggest that auditory perturbations applied during a challenging stepping task may be useful for measuring rehabilitation outcomes

    Tai Chi and vestibular rehabilitation improve vestibulopathic gait via different neuromuscular mechanisms: Preliminary report

    Get PDF
    BACKGROUND: Vestibular rehabilitation (VR) is a well-accepted exercise program intended to remedy balance impairment caused by damage to the peripheral vestibular system. Alternative therapies, such as Tai Chi (TC), have recently gained popularity as a treatment for balance impairment. Although VR and TC can benefit people with vestibulopathy, the degree to which gait improvements may be related to neuromuscular adaptations of the lower extremities for the two different therapies are unknown. METHODS: We examined the relationship between lower extremity neuromuscular function and trunk control in 36 older adults with vestibulopathy, randomized to 10 weeks of either VR or TC exercise. Time-distance measures (gait speed, step length, stance duration and step width), lower extremity sagittal plane mechanical energy expenditures (MEE), and trunk sagittal and frontal plane kinematics (peak and range of linear and angular velocity), were measured. RESULTS: Although gait time-distance measures were improved in both groups following treatment, no significant between-groups differences were observed for the MEE and trunk kinematic measures. Significant within groups changes, however, were observed. The TC group significantly increased ankle MEE contribution and decreased hip MEE contribution to total leg MEE, while no significant changes were found within the VR group. The TC group exhibited a positive relationship between change in leg MEE and change in trunk velocity peak and range, while the VR group exhibited a negative relationship. CONCLUSION: Gait function improved in both groups consistent with expectations of the interventions. Differences in each group's response to therapy appear to suggest that improved gait function may be due to different neuromuscular adaptations resulting from the different interventions. The TC group's improvements were associated with reorganized lower extremity neuromuscular patterns, which appear to promote a faster gait and reduced excessive hip compensation. The VR group's improvements, however, were not the result of lower extremity neuromuscular pattern changes. Lower-extremity MEE increases corresponded to attenuated forward trunk linear and angular movement in the VR group, suggesting better control of upper body motion to minimize loss of balance. These data support a growing body of evidence that Tai Chi may be a valuable complementary treatment for vestibular disorders

    Exercising with a robotic exoskeleton can improve memory and gait in people with Parkinson’s disease by facilitating progressive exercise intensity

    No full text
    Abstract People with Parkinson’s disease (PwPD) can benefit from progressive high-intensity exercise facilitated with a lower-extremity exoskeleton, but the mechanisms explaining these benefits are unknown. We explored the relationship between exercise intensity progression and memory and gait outcomes in PwPD who performed 8 weeks (2 × per week) of progressive exercise with and without a lower-extremity powered exoskeleton, as the planned exploratory endpoint analysis of an open-label, parallel, pilot randomized controlled trial. Adults 50–85 years old with a confirmed diagnosis of PD participated. Twenty-seven participants randomized to exercise with (Exo = 13) or without (Nxo = 14) the exoskeleton were included in this exploratory endpoint analysis. Detailed exercise logs were kept and actigraphy was used to measure activity count*min−1 (ACPM) during all exercise sessions. Only the Exo group were able to progressively increase their ACPM over the entire 8-week intervention, whereas the Nxo group plateaued after 4 weeks. Exercise intensity progression correlated with change in the memory sub-scale of the SCOPA-COG and change in gait endurance from the 6MWT, consistent with the prevailing hypotheses linking high-intensity interval exercise to improved muscle and brain function via angiogenic and neurotrophic mechanisms. Facilitating high-intensity exercise with advanced rehabilitation technology is warranted for improving memory and gait endurance in PwPD. Registration: ClinicalTrials.gov, NCT 03583879 (7/10/2018)

    Physiotherapists’ Experiences Using the Ekso Bionic Exoskeleton with Patients in a Neurological Rehabilitation Hospital: A Qualitative Study

    No full text
    Use of bionic overground exoskeletons to assist with neurological rehabilitation is becoming increasingly prevalent and has important implications for physiotherapists and their patients. Yet, there is a paucity of research about the impact of integrating this technology on physiotherapists’ work. The purpose of this study was to explore how the training and implementation of using the Ekso robotic exoskeleton with patients affects physiotherapists’ work. An exploratory qualitative study of three physiotherapists working at a neurological rehabilitation centre in Eastern Canada was conducted using one-on-one semistructured interviews in July 2017. Audio recordings were transcribed verbatim, and data was coded and analyzed using thematic analysis. Six themes emerged from the data: developing organizational capacity; ethical use of technology; benefits of the equipment; challenges of the equipment; cognitive workload; and the technological environment. The results suggest that the adoption and integration of bionic exoskeletons into rehabilitation practice is not as simple as training physiotherapists and giving them the device. More research is needed to understand the increased cognitive demands of working with patients using technologically advanced exoskeletons within a dynamic, technology-rich healthcare environment, while managing patient expectations and ethical use

    Development of a Mechanistic Hypothesis Linking Compensatory Biomechanics and Stepping Asymmetry during Gait of Transfemoral Amputees

    No full text
    Objective. Gait asymmetry is a common adaptation observed in lower-extremity amputees, but the underlying mechanisms that explain this gait behavior remain unclear for amputees that use above-knee prostheses. Our objective was to develop a working hypothesis to explain chronic stepping asymmetry in otherwise healthy amputees that use above-knee prostheses. Methods. Two amputees (both through-knee; one with microprocessor knee, one with hydraulic knee) and fourteen control subjects participated. 3D kinematics and kinetics were acquired at normal, fast, and slow walking speeds. Data were analyzed for the push-off and collision limbs during a double support phase. We examined gait parameters to identify the stepping asymmetry then examined the external work rate (centre of mass) and internal (joint) power profiles to formulate a working hypothesis to mechanistically explain the observed stepping asymmetry. Results. Stepping asymmetry at all three gait speeds in amputees was characterized by increased stance phase duration of the intact limb versus relatively normal stance phase duration for the prosthesis limb. The prosthesis limb contributed very little to positive and negative work during the double support phase of gait. To compensate, the intact leg at heel strike first provided aid to the deficient prosthetic ankle/foot during its push-off by doing positive work with the intact knee, which caused a delayed stance phase pattern. The resulting delay in toe-off of the intact limb then facilitated the energy transfer from the more robust intact push-off limb to the weaker colliding prosthesis side. This strategy was observed for both amputees. Conclusions. There is a sound scientific rationale for a mechanistic hypothesis that stepping asymmetry in amputee participants is a result of a motor adaptation that is both facilitating the lower-leg trajectory enforced by the prosthesis while compensating for the lack of work done by the prosthesis, the cost of which is increased energy expenditure of the intact knee and both hips
    corecore