41 research outputs found

    Effects of ultraviolet radiation on the abundance, diversity and activity of bacterioneuston and bacterioplankton: insights from microcosm studies

    No full text
    The effects of ultraviolet-B (0.4 W m-2) radiation on the abundance, diversity and heterotrophic metabolism of bacterioneuston and bacterioplankton communities from Ria de Aveiro (Portugal) were assessed and compared to those of freshwater communities from Lake Vela (Portugal) in microcosm experiments. Exposure to 9 h of artificial ultraviolet radiation (UVR) led to 24–33% reduction in bacterial abundance and up to a 70% decrease in bacterial diversity. Maximum extracellular enzyme activity and monomer incorporation rates were reduced by 16–90% and 80–100%, respectively. Recovery of bacterial activity during post-UV dark incubations ranged from 10 to 100% for extracellular enzyme activity and 40% for monomer incorporation rates. In general, the heterotrophic activity of bacterioneuston was more inhibited by UVR than that of bacterioplankton. However, DGGE profiles revealed greater UVR-induced reductions in the diversity of bacterioplankton compared to bacterioneuston. The similarity between bacterioneuston and bacterioplankton communities in samples collected at early morning was lower than at noon (pre-exposed communities) and increased upon experimental irradiation, possibly indicating selection for UV-resistant bacteria. The observation that UV exposure resulted in enhanced reduction of bacterioneuston activity, but a lower reduction in bacterial diversity accompanied by enhanced dark recovery potential compared to bacterioplankton, indicates re-directioning of bacterioneuston metabolism towards stress defence/recovery strategies rather than the sustained heterotrophic metabolism. Our results indicate that UVR can significantly decrease the abundance, diversity and activity of bacteria inhabiting the surface and sub-surface layers of freshwater and estuarine systems with potentially important impacts on the biogeochemical cycles in these environments

    Net pelagic heterotrophy in mesotrophic and oligotrophic basins of a large, temperate lake

    No full text
    Understanding the effects of trophic status and dissolved organic carbon concentration (DOC) on lake carbon cycling is essential for accurate ecosystem carbon models. Using isotopically labelled substrates we assessed spatial and temporal variability in bacterial respiration (BR) and algal primary production (PP) in two trophically, morphometrically and hydrologically different basins in Loch Lomond, a large temperate lake in Scotland. GIS modelling was used to construct a whole lake balance for bacterial production/respiration and PP, and from this the proportion of heterotrophy fuelled by allochthonous carbon was estimated. We tested the hypotheses that trophic status and DOC concentration affect the balance between PP and BR and examined which is the more significant driving factor. Additionally we estimated the percentage of BR that is fuelled by terrestrial carbon. PP varied seasonally and showed inter-basin homogeneity. BR was greatest in the mesotrophic south basin in autumn, which corresponded to measured peak DOC input, though over an annual cycle no relationship was observed between BR and DOC concentration. The PP:BR ratio was 0.37 ± 0.30 and 0.3 ± 0.45 in the north and south basins, respectively, assuming a bacterial growth efficiency of 0.1. We have found that allochthonous carbon potentially supports a substantial quantity of pelagic production, even during periods of high photosynthesis. Less productive systems are thought to be dominated by heterotrophic processes. However, we have found that the mesotrophic basin of a large lake to be as heterotrophic as its neighbouring oligotrophic basin, an observation that has implications for our understanding of modelling of the role of lakes in linking the terrestrial-atmospheric carbon cycle

    The Role of Microbial Extracellular Enzymes in the Transformation of Dissolved Organic Matter in Humic Waters

    No full text
    corecore