33 research outputs found

    Interpreting DNA mixtures with relatives of a missing suspect

    Get PDF
    Recent advances in DNA profiling have been proven extremely useful for forensic human identification. DNA mixtures are commonly found in serious crimes such as rape as well as voluminous crimes like theft. In this paper, one general formula is obtained for the evaluation of DNA mixtures when the suspect is unavailable for typing, but one maternal and one paternal relatives of the suspect are typed instead. In principle, closer relatives of the suspect will provide more genetic information on the genotype of the unavailable suspect. The effect of the relatives' DNA profiles on the interpretation of DNA mixtures is illustrated with case example. © 2011 IEEE.published_or_final_versionThe 1st International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE 2011), Nanjing, China, 24-26 June 2011. In Proceedings of the 1st RSETE, 2011, p. 7649-765

    Semi-automatic algorithm for construction of the left ventricular area variation curve over a complete cardiac cycle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two-dimensional echocardiography (2D-echo) allows the evaluation of cardiac structures and their movements. A wide range of clinical diagnoses are based on the performance of the left ventricle. The evaluation of myocardial function is typically performed by manual segmentation of the ventricular cavity in a series of dynamic images. This process is laborious and operator dependent. The automatic segmentation of the left ventricle in 4-chamber long-axis images during diastole is troublesome, because of the opening of the mitral valve.</p> <p>Methods</p> <p>This work presents a method for segmentation of the left ventricle in dynamic 2D-echo 4-chamber long-axis images over the complete cardiac cycle. The proposed algorithm is based on classic image processing techniques, including time-averaging and wavelet-based denoising, edge enhancement filtering, morphological operations, homotopy modification, and watershed segmentation. The proposed method is semi-automatic, requiring a single user intervention for identification of the position of the mitral valve in the first temporal frame of the video sequence. Image segmentation is performed on a set of dynamic 2D-echo images collected from an examination covering two consecutive cardiac cycles.</p> <p>Results</p> <p>The proposed method is demonstrated and evaluated on twelve healthy volunteers. The results are quantitatively evaluated using four different metrics, in a comparison with contours manually segmented by a specialist, and with four alternative methods from the literature. The method's intra- and inter-operator variabilities are also evaluated.</p> <p>Conclusions</p> <p>The proposed method allows the automatic construction of the area variation curve of the left ventricle corresponding to a complete cardiac cycle. This may potentially be used for the identification of several clinical parameters, including the area variation fraction. This parameter could potentially be used for evaluating the global systolic function of the left ventricle.</p

    The Viral and Cellular MicroRNA Targetome in Lymphoblastoid Cell Lines

    Get PDF
    Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus linked to a number of B cell cancers and lymphoproliferative disorders. During latent infection, EBV expresses 25 viral pre-microRNAs (miRNAs) and induces the expression of specific host miRNAs, such as miR-155 and miR-21, which potentially play a role in viral oncogenesis. To date, only a limited number of EBV miRNA targets have been identified; thus, the role of EBV miRNAs in viral pathogenesis and/or lymphomagenesis is not well defined. Here, we used photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) combined with deep sequencing and computational analysis to comprehensively examine the viral and cellular miRNA targetome in EBV strain B95-8-infected lymphoblastoid cell lines (LCLs). We identified 7,827 miRNA-interaction sites in 3,492 cellular 3′UTRs. 531 of these sites contained seed matches to viral miRNAs. 24 PAR-CLIP-identified miRNA:3′UTR interactions were confirmed by reporter assays. Our results reveal that EBV miRNAs predominantly target cellular transcripts during latent infection, thereby manipulating the host environment. Furthermore, targets of EBV miRNAs are involved in multiple cellular processes that are directly relevant to viral infection, including innate immunity, cell survival, and cell proliferation. Finally, we present evidence that myc-regulated host miRNAs from the miR-17/92 cluster can regulate latent viral gene expression. This comprehensive survey of the miRNA targetome in EBV-infected B cells represents a key step towards defining the functions of EBV-encoded miRNAs, and potentially, identifying novel therapeutic targets for EBV-associated malignancies

    Getting ‘Smad' about obesity and diabetes

    Get PDF
    Recent findings on the role of transforming growth factor (TGF)-β/Smad3 signaling in the pathogenesis of obesity and type 2 diabetes have underscored its importance in metabolism and adiposity. Indeed, elevated TGF-β has been previously reported in human adipose tissue during morbid obesity and diabetic neuropathy. In this review, we discuss the pleiotropic effects of TGF-β/Smad3 signaling on metabolism and energy homeostasis, all of which has an important part in the etiology and progression of obesity-linked diabetes; these include adipocyte differentiation, white to brown fat phenotypic transition, glucose and lipid metabolism, pancreatic function, insulin signaling, adipocytokine secretion, inflammation and reactive oxygen species production. We summarize the recent in vivo findings on the role of TGF-β/Smad3 signaling in metabolism based on the studies using Smad3−/− mice. Based on the presence of a dual regulatory effect of Smad3 on peroxisome proliferator-activated receptor (PPAR)β/δ and PPARγ2 promoters, we propose a unifying mechanism by which this signaling pathway contributes to obesity and its associated diabetes. We also discuss how the inhibition of this signaling pathway has been implicated in the amelioration of many facets of metabolic syndromes, thereby offering novel therapeutic avenues for these metabolic conditions

    Salmonella bongori provides insights into the evolution of the Salmonellae.

    Get PDF
    The genus Salmonella contains two species, S. bongori and S. enterica. Compared to the well-studied S. enterica there is a marked lack of information regarding the genetic makeup and diversity of S. bongori. S. bongori has been found predominantly associated with cold-blooded animals, but it can infect humans. To define the phylogeny of this species, and compare it to S. enterica, we have sequenced 28 isolates representing most of the known diversity of S. bongori. This cross-species analysis allowed us to confidently differentiate ancestral functions from those acquired following speciation, which include both metabolic and virulence-associated capacities. We show that, although S. bongori inherited a basic set of Salmonella common virulence functions, it has subsequently elaborated on this in a different direction to S. enterica. It is an established feature of S. enterica evolution that the acquisition of the type III secretion systems (T3SS-1 and T3SS-2) has been followed by the sequential acquisition of genes encoding secreted targets, termed effectors proteins. We show that this is also true of S. bongori, which has acquired an array of novel effector proteins (sboA-L). All but two of these effectors have no significant S. enterica homologues and instead are highly similar to those found in enteropathogenic Escherichia coli (EPEC). Remarkably, SboH is found to be a chimeric effector protein, encoded by a fusion of the T3SS-1 effector gene sopA and a gene highly similar to the EPEC effector nleH from enteropathogenic E. coli. We demonstrate that representatives of these new effectors are translocated and that SboH, similarly to NleH, blocks intrinsic apoptotic pathways while being targeted to the mitochondria by the SopA part of the fusion. This work suggests that S. bongori has inherited the ancestral Salmonella virulence gene set, but has adapted by incorporating virulence determinants that resemble those employed by EPEC.We thank the core sequencing and informatics teams at the Sanger Institute for their assistance and The Wellcome Trust for its support of the Sanger Institute Pathogen Genomics and Biology groups and the MRC for their support of GF, KSR and GNS. MCF, GCL, TRC, HSS, GSV, MS, NKP, RAK, JP, GD and NRT were supported by Wellcome Trust grant 076964 and MICROME, an EU Framework Programme 7 Collaborative Project, Grant Agreement Number 222886-2. Work was also supported by Grant ADI-08/2006 from Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) and The World Bank, and grant 1100092 from Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT). CJB was supported by fellowships from CONICYT (21080373 and AT-24091015)
    corecore