3,695 research outputs found

    Hidden Charge 2e Boson in Doped Mott Insulators: Field Theory of Mottness

    Full text link
    We construct the low energy theory of a doped Mott insulator, such as the high-temperature superconductors, by explicitly integrating over the degrees of freedom far away from the chemical potential. For either hole or electron doping, a charge 2e bosonic field emerges at low energy. The charge 2e boson mediates dynamical spectral weight transfer across the Mott gap and creates a new charge e excitation by binding a hole. The result is a bifurcation of the electron dispersion below the chemical potential as observed recently in angle-resolved photoemission on Pb-doped Bi_2Sr_2CaCu_2O_{8+\delta} (Pb2212).Comment: 4 pages, 2 figures: Correct version to appear in PRL. Revisions include a derivation of the electron operator at low energies which reveals a branching structure seen recently in ARPES on Pb221

    Array-based iterative measurements of SmKS travel times and their constraints on outermost core structure

    Get PDF
    Vigorous convection in Earth's outer core led to the suggestion that it is chemically homogeneous. However, there is increasing seismic evidence for structural complexities close to the outer core's upper and lower boundaries. Both body waves and normal mode data have been used to estimate a P wave velocity, V_p, at the top of the outer core (the E’ layer), which is lower than that in the Preliminary Reference Earth Model. However, these low V_p models do not agree on the form of this velocity anomaly. One reason for this is the difficulty in retrieving and measuring SmKS arrival times. To address this issue, we propose a novel approach using data from seismic arrays to iteratively measure SmKS-SKKS-differential travel times. This approach extracts individual SmKS signal from mixed waveforms of the SmKS series, allowing us to reliably measure differential travel times. We successfully use this method to measure SmKS time delays from earthquakes in the Fiji‐Tonga and Vanuatu subduction zones. SmKS time delays are measured by waveform cross correlation between SmKS and SKKS, and the cross‐correlation coefficient allows us to access measurement quality. We also apply this iterative scheme to synthetic SmKS seismograms to investigate the 3‐D mantle structure's effects. The mantle structure corrections are not negligible for our data, and neglecting them could bias the V_p estimation of uppermost outer core. After mantle structure corrections, we can still see substantial time delays of S3KS, S4KS, and S5KS, supporting a low V_p at the top of Earth's outer core

    Evolutionary Subnetworks in Complex Systems

    Full text link
    Links in a practical network may have different functions, which makes the original network a combination of some functional subnetworks. Here, by a model of coupled oscillators, we investigate how such functional subnetworks are evolved and developed according to the network structure and dynamics. In particular, we study the case of evolutionary clustered networks in which the function of each link (either attractive or repulsive coupling) is updated by the local dynamics. It is found that, during the process of system evolution, the network is gradually stabilized into a particular form in which the attractive (repulsive) subnetwork consists only the intralinks (interlinks). Based on the properties of subnetwork evolution, we also propose a new algorithm for network partition which is distinguished by the convenient operation and fast computing speed.Comment: 4 pages, 4 figure

    Exact Integration of the High Energy Scale in Doped Mott Insulators

    Full text link
    We expand on our earlier work (cond-mat/0612130, Phys. Rev. Lett. {\bf 99}, 46404 (2007)) in which we constructed the exact low-energy theory of a doped Mott insulator by explicitly integrating (rather than projecting) out the degrees of freedom far away from the chemical potential. The exact low-energy theory contains degrees of freedom that cannot be obtained from projective schemes. In particular a new charge ±2e\pm 2e bosonic field emerges at low energies that is not made out of elemental excitations. Such a field accounts for dynamical spectral weight transfer across the Mott gap. At half-filling, we show that two such excitations emerge which play a crucial role in preserving the Luttinger surface along which the single-particle Green function vanishes. In addition, the interactions with the bosonic fields defeat the artificial local SU(2) symmetry that is present in the Heisenberg model. We also apply this method to the Anderson-U impurity and show that in addition to the Kondo interaction, bosonic degrees of freedom appear as well. Finally, we show that as a result of the bosonic degree of freedom, the electron at low energies is in a linear superposition of two excitations--one arising from the standard projection into the low-energy sector and the other from the binding of a hole and the boson.Comment: Published veriso

    Improving efficiency of electrostatic spray-assisted vapor deposited Cu2ZnSn(S,Se)4 solar cells by modification of Mo/absorber interface

    Get PDF
    Electrostatic spray-assisted vapor deposition (ESAVD) is a non-vacuum, low cost and eco-friendly method to produce Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4 (CZTSSe) absorbers for thin film solar cells, and it is a very promising method for industrialization due to it is high deposition speed and close to unity deposition efficiency. In this work, in order to improve the efficiency of ESAVD deposited CZTSSe solar cells, an ultrathin ZnO (circa 10 nm) layer was employed as an intermediate layer between CZTSSe and Mo back contact to avoid the direct contact between Mo and CZTSSe and reduce the decomposition of CZTSSe during annealing process. XRF and EDX were used to characterize the chemical composition of CZTSSe before and after selenization respectively. SEM and Raman results showed the improved absorber morphology and the reduced direct interfacial reaction between CZTSSe and Mo. The improvement of the CZTSSe/Mo interface due to the intermediate layer was also reflected in the quality of the derived photovoltaic devices, leading to an improved efficiency of ESAVDdeposited kesterite solar cells from 3.25% to 4.03%

    Energy Flow in Acoustic Black Holes

    Full text link
    We present the results of an analysis of superradiant energy flow due to scalar fields incident on an acoustic black hole. In addition to providing independent confirmation of the recent results in [5], we determine in detail the profile of energy flow everywhere outside the horizon. We confirm explicitly that in a suitable frame the energy flow is inward at the horizon and outward at infinity, as expected on physical grounds.Comment: 8 pages, 9 figures, Comments added to discussion of energy flow and introductory section abbreviate

    Discussion on Quaternary sea-level change on the continental shelf of Hong Kong

    Get PDF
    Yim et al comment on Fyfe et al's sequence stratigraphical interpretation of the Quaternary inner shelf sediments of Hong Kong. Fyfe et al respond to the comments.published_or_final_versio

    A standing wave-type noncontact linear ultrasonic motor

    Get PDF
    2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
    corecore