39 research outputs found

    Identification of Human GnIH Homologs, RFRP-1 and RFRP-3, and the Cognate Receptor, GPR147 in the Human Hypothalamic Pituitary Axis

    Get PDF
    The existence of a hypothalamic gonadotropin-inhibiting system has been elusive. A neuropeptide named gonadotropin-inhibitory hormone (GnIH, SIKPSAYLPLRF-NH2) which directly inhibits gonadotropin synthesis and release from the pituitary was recently identified in quail hypothalamus. Here we identify GnIH homologs in the human hypothalamus and characterize their distribution and biological activity. GnIH homologs were isolated from the human hypothalamus by immunoaffinity purification, and then identified as MPHSFANLPLRF-NH2 (human RFRP-1) and VPNLPQRF-NH2 (human RFRP-3) by mass spectrometry. Immunocytochemistry revealed GnIH-immunoreactive neuronal cell bodies in the dorsomedial region of the hypothalamus with axonal projections to GnRH neurons in the preoptic area as well as to the median eminence. RT-PCR and subsequent DNA sequencing of the PCR products identified human GnIH receptor (GPR147) mRNA expression in the hypothalamus as well as in the pituitary. In situ hybridization further identified the expression of GPR147 mRNA in luteinizing hormone producing cells (gonadotropes). Human RFRP-3 has recently been shown to be a potent inhibitor of gonadotropin secretion in cultured sheep pituitary cells by inhibiting Ca2+ mobilization. It also directly modulates GnRH neuron firing. The identification of two forms of GnIH (RFRP-1 and RFRP-3) in the human hypothalamus which targets human GnRH neurons and gonadotropes and potently inhibit gonadotropin in sheep models provides a new paradigm for the regulation of hypothalamic-pituitary-gonadal axis in man and a novel means for manipulating reproductive functions

    L-Leucine increases the daily body temperature and affords thermotolerance in broiler chicks

    Get PDF
    Objective Heat stress poses an increasing threat for poultry production. Some amino acids have been found to play critical roles in affording thermotolerance. Recently, it was found that in ovo administration of L-leucine (L-Leu) altered amino acid metabolism and afforded thermotolerance in heat-exposed broiler chicks. Methods In this study, two doses (35 and 70 μmol/egg) of L-Leu were administered in ovo on embryonic day 7 to determine their effect on rectal temperature (RT), body weight (BW) and thyroid hormones at hatching. Changes in RT, BW, and thermotolerance in post-hatched chicks were also analyzed. Results It was found that in ovo administration of L-Leu dose-dependently reduced RT and plasma thyroxine (T4) level just after hatching. In post-hatched neonatal broiler chicks, however, the higher dose of L-Leu administered in ovo significantly increased RT without affecting BW gain. In chicks that had been exposed to heat stress, the RT was significantly lowered by in ovo administration of L-Leu (high dose) in comparison with the control chicks under the same high ambient temperature (HT: 35°C±1°C, 120 min). Conclusion In ovo administration of L-Leu in a high dose contributed to an increased daily body temperature and afforded thermotolerance under HT in neonatal broiler chicks

    Parathyroid hormone 1 (1-34) acts on the scales and involves calcium metabolism in goldfish

    Get PDF
    金沢大学環日本海域環境研究センターThe effect of fugu parathyroid hormone 1 (fugu PTH1) on osteoblasts and osteoclasts in teleosts was examined with an assay system using teleost scale and the following markers: alkaline phosphatase (ALP) for osteoblasts and tartrate-resistant acid phosphatase (TRAP) for osteoclasts. Synthetic fugu PTH1 (1-34) (100 pg/ml-10 ng/ml) significantly increased ALP activity at 6 h of incubation. High-dose (10 ng/ml) fugu PTH1 significantly increased ALP activity even after 18 h of incubation. In the case of TRAP activity, fugu PTH1 did not change at 6 h of incubation, but fugu PTH1 (100 pg/ml-10 ng/ml) significantly increased TRAP activity at 18 h. Similar results were obtained for human PTH (1-34), but there was an even greater response with fugu PTH1 than with human PTH. In vitro, we demonstrated that both the receptor activator of the NF-κB ligand in osteoblasts and the receptor activator NF-κB mRNA expression in osteoclasts increased significantly by fugu PTH1 treatment. In an in vivo experiment, fugu PTH1 induced hypercalcemia resulted from the increase of both osteoblastic and osteoclastic activities in the scale as well as the decrease of scale calcium contents after fugu PTH1 injection. In addition, an in vitro experiment with intramuscular autotransplanted scale indicated that the ratio of multinucleated osteoclasts/mononucleated osteoclasts in PTH-treated scales was significantly higher than that in the control scales. Thus, we concluded that PTH acts on osteoblasts and osteoclasts in the scales and regulates calcium metabolism in goldfish. © 2011 Elsevier Inc. All rights reserved

    Polychlorinated biphenyl (118) activates osteoclasts and induces bone resorption in goldfish

    Get PDF
    To analyze the effect of polychlorinated biphenyl (PCB) 118 on fish bone metabolism, we examined osteoclastic and osteoblastic activities, as well as plasma calcium levels, in the scales of PCB (118)-injected goldfish. In addition, effect of PCB (118) on osteoclasts and osteoblasts was investigated in vitro. Immature goldfish, in which the endogenous effects of sex steroids are negligible, were used. PCB (118) was solubilized in dimethyl sulfoxide at a concentration of 10 ppm. At 1 and 2 days after PCB (118) injection (100 ng/g body weight), both osteoclastic and osteoblastic activities, and plasma calcium levels were measured. In an in vitro study, then, both osteoclastic and osteoblastic activities as well as each marker mRNA expression were examined. At 2 days, scale osteoclastic activity in PCB (118)-injected goldfish increased significantly, while osteoblastic activity did not change significantly. Corresponding to osteoclastic activity, plasma calcium levels increased significantly at 2 days after PCB (118) administration. Osteoclastic activation also occurred in the marker enzyme activities and mRNA expressions in vitro. Thus, we conclude that PCB (118) disrupts bone metabolism in goldfish both in vivo and in vitro experiments. © 2012 The Author(s)

    Heat Stress Biomarker Amino Acids and Neuropeptide Afford Thermotolerance in Chicks

    Full text link
    With global warming, heat stress is becoming a pressing concern worldwide. In chickens, heat stress reduces food intake and growth, and increases body temperature and stress responses. Although it is believed that young chicks do not experience heat stress as they need a higher ambient temperature to survive, our series of studies in young chicks showed that they are sensitive to heat stress. This review summarizes current knowledge on amino acid metabolisms during heat stress, with special emphasis on the hypothermic functions of l-citrulline (l-Cit) and l-leucine (l-Leu), and the functions of neuropeptide Y (NPY) in terms of body temperature and heat stress regulation in chicks. Amino acid metabolism is severely affected by heat stress. For example, prolonged heat stress reduces plasma l-Cit in chicks and l-Leu in the brain and liver of embryos. l-Cit and l-Leu supplementation affords thermotolerance in young chicks. NPY expression is increased in the brains of heat-exposed chicks. NPY has a hypothermic action under control thermoneutral temperature and heat stress in chicks. The NPY-sub-receptor Y5 is a partial mediator of the hypothermic action of NPY. Further, NPY stimulates brain dopamine concentrations and acts as an anti-stress agent in heat-exposed fasted, but not fed chicks. In conclusion, young chicks can serve as a model animal for the study of heat stress in chickens. l-Cit, l-Leu, and NPY were identified as biomarkers of heat stress, with the potential to afford thermotolerance in chicks

    Changes of Lysosomal Hydrolase Activity in the Anterior Pituitary of Hens during Induced Molting

    Full text link
    The goal of this study was to determine whether lysosomal hydrolase activity changes during induced molting in the hen pituitary. White Leghorn aged laying hens were subjected to induced molting by feed withdrawal. Gradual feeding was started on 4th d of egg-laying cessation. The anterior pituitaries were collected from hens of pretreatment, 3 d and 5 d after starvation, 3 d and 10 d after cessation of egg-laying (6 d after resumption of feeding), on day of and 7 d after resumption of egg-laying. They were processed for the detection of acid phosphatase (AcPase) activity by enzyme histochemistry. Sections were then examined under a light microscope with an image analysis computer system. The AcPase activity was observed in the cellular cytoplasm in both cephalic and caudal lobes of the anterior pituitary in all groups of hens. In the both lobes the positive area increased significantly in the group of 3 d after cessation of egg-laying when compared with pretreatment group. These results suggest that lysosomal enzyme activity in the anterior pituitary of chicken was enhanced a few days after cessation of laying, which may be responsible for the digestion of unusable hormonal granules at this phase
    corecore