1,221 research outputs found
Autonomous transport and splitting of a droplet on an open surface
Pumpless transport of droplets on open surfaces has gained significant attention because of its applications starting from vapor condensation to Lab-on-a-Chip systems. Mixing two droplets on open surfaces can be carried out quickly by using wettability patterning. However, it is quite challenging to split a droplet in the absence of external stimuli because of the interfacial energy of the droplet. Here, we demonstrate a standalone power-free technique for transport and splitting of droplets on open surfaces using continuous wettability gradients. A droplet moves continuously from a low to a high wettability region on the wettability-gradient surface. A Y-shaped wettability-gradient track ā laid on a superhydrophobic background ā is used to investigate the dynamics of the splitting process. A three-dimensional phase-field Cahn-Hilliard model for interfaces and the Navier-Stokes equations for transport are employed and solved numerically using the finite element method. Numerical results are used to decipher the motion and splitting of droplet at the Y junction using the principle of energy conservation. It is observed that droplet splitting depends on the configuration of the Y junction; droplets split faster for the superhydrophobic wedge angle of 90ā and the splitting ratio (ratio of the sizes of daughter droplets) depends on the widths of the Y branches. A critical branch-width ratio (w2w1=0.79) is identified below which the droplet does not split and moves towards the branch of higher width and settles there. The present study provides the required theoretical underpinnings to achieve autonomous transport and splitting of droplets on open surfaces, which has clear potential for applications in Lab-on-a-Chip devices
Droplet dynamics on a wettability patterned surface during spray impact
Wettability patterning of a surface is a passive method to manipulate the flow and heat transport mechanism in many physical processes and industrial applications. This paper proposes a rational wettability pattern comprised of multiple superhydrophilic wedges on a superhydrophobic background, which can continuously remove the impacted spray droplets from the horizontal surface. We observed that the spray droplets falling on the superhydrophilic wedge region spread and form a thin liquid film, which is passively transported away from the surface. However, most of the droplets falling on the superhydrophobic region move towards the wedge without any flooding. The physics of the passive transport of the liquid film on a wedge is also delved into using numerical modelling. In particular, we elucidate the different modes of droplet transport in the superhydrophobic region and the interaction of multiple droplets. The observed droplet dynamics could have profound implications in spray cooling systems and passive removal of liquid from a horizontal surface. This studyās findings will be beneficial for the optimization of efficient wettability patterned surfaces for spray cooling application
The Stokes Phenomenon and Quantum Tunneling for de Sitter Radiation in Nonstationary Coordinates
We study quantum tunneling for the de Sitter radiation in the planar
coordinates and global coordinates, which are nonstationary coordinates and
describe the expanding geometry. Using the phase-integral approximation for the
Hamilton-Jacobi action in the complex plane of time, we obtain the
particle-production rate in both coordinates and derive the additional
sinusoidal factor depending on the dimensionality of spacetime and the quantum
number for spherical harmonics in the global coordinates. This approach
resolves the factor of two problem in the tunneling method.Comment: LaTex 10 pages, no figur
Convergent Surface Water Distributions in U.S. Cities
Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and distribution: in other words, cities will gain or lose water such that they become more similar to each other than are their surrounding natural landscapes. Using a database of more than 1 million water bodies and 1 million km of streams, we compared the surface water of 100 US cities with their surrounding undeveloped land. We evaluated differences in areal (A WB) and numeric densities (N WB) of water bodies (lakes, wetlands, and so on), the morphological characteristics of water bodies (size), and the density (D C) of surface flow channels (that is, streams and rivers). The variance of urban A WB, N WB, and D C across the 100 MSAs decreased, by 89, 25, and 71%, respectively, compared to undeveloped land. These data show that many cities are surface water poor relative to undeveloped land; however, in drier landscapes urbanization increases the occurrence of surface water. This convergence pattern strengthened with development intensity, such that high intensity urban development had an areal water body density 98% less than undeveloped lands. Urbanization appears to drive the convergence of hydrological features across the US, such that surface water distributions of cities are more similar to each other than to their surrounding landscapes. Ā© 2014 The Author(s)
Assessing the homogenization of urban land management with an application to US residential lawn care.
Changes in land use, land cover, and land management present some of the greatest potential global environmental challenges of the 21st century. Urbanization, one of the principal drivers of these transformations, is commonly thought to be generating land changes that are increasingly similar. An implication of this multiscale homogenization hypothesis is that the ecosystem structure and function and human behaviors associated with urbanization should be more similar in certain kinds of urbanized locations across biogeophysical gradients than across urbanization gradients in places with similar biogeophysical characteristics. This paper introduces an analytical framework for testing this hypothesis, and applies the framework to the case of residential lawn care. This set of land management behaviors are often assumed--not demonstrated--to exhibit homogeneity. Multivariate analyses are conducted on telephone survey responses from a geographically stratified random sample of homeowners (n = 9,480), equally distributed across six US metropolitan areas. Two behaviors are examined: lawn fertilizing and irrigating. Limited support for strong homogenization is found at two scales (i.e., multi- and single-city; 2 of 36 cases), but significant support is found for homogenization at only one scale (22 cases) or at neither scale (12 cases). These results suggest that US lawn care behaviors are more differentiated in practice than in theory. Thus, even if the biophysical outcomes of urbanization are homogenizing, managing the associated sustainability implications may require a multiscale, differentiated approach because the underlying social practices appear relatively varied. The analytical approach introduced here should also be productive for other facets of urban-ecological homogenization
Metric-based vs peer-reviewed evaluation of a research output: Lesson learnt from UKās national research assessment exercise
Purpose
There is a general inquisition regarding the monetary value of a research output, as a substantial amount of funding in modern academia is essentially awarded to good research presented in the form of journal articles, conferences papers, performances, compositions, exhibitions, books and book chapters etc., which, eventually leads to another question if the value varies across different disciplines. Answers to these questions will not only assist academics and researchers, but will also help higher education institutions (HEIs) make informed decisions in their administrative and research policies.
Design and methodology
To examine both the questions, we applied the United Kingdomās recently concluded national research assessment exercise known as the Research Excellence Framework (REF) 2014 as a case study. All the data for this study is sourced from the openly available publications which arose from the digital repositories of REFās results and HEFCEās funding allocations.
Findings
A world leading output earns between Ā£7504 and Ā£14,639 per year within the REF cycle, whereas an internationally excellent output earns between Ā£1876 and Ā£3659, varying according to their area of research. Secondly, an investigation into the impact rating of 25315 journal articles submitted in five areas of research by UK HEIs and their awarded funding revealed a linear relationship between the percentage of quartile-one journal publications and percentage of 4* outputs in Clinical Medicine, Physics and Psychology/Psychiatry/Neuroscience UoAs, and no relationship was found in the Classics and Anthropology/Development Studies UoAs, due to the fact that most publications in the latter two disciplines are not journal articles.
Practical implications
The findings provide an indication of the monetary value of a research output, from the perspectives of government funding for research, and also what makes a good output, i.e. whether a relationship exists between good quality output and the source of its publication. The findings may also influence future REF submission strategies in HEIs and ascertain that the impact rating of the journals is not necessarily a reflection of the quality of research in every discipline, and this may have a significant influence on the future of scholarly communications in general.
Originality
According to the authorās knowledge, this is the first time an investigation has estimated the monetary value of a good research output
High concentration of childhood deaths in the low-lying areas of Chakaria HDSS, Bangladesh: findings from a spatial analysis
Background: Despite significant reduction of childhood mortality in Bangladesh, large spatial variations persist. Identification of lower level spatial units with higher concentrations of deaths can be useful for strengthening services in these areas. This paper reports findings from a spatial analysis of deaths in Chakaria, a rural subdistrict, where a Health and Demographic Surveillance System has been in place since 1999. Chakaria is an INDEPTH member site. Methods: An analysis was done of 339 deaths among nearly 24,500 children under the age of five during 2005–2008. One ward, the lowest level of administrative units, was the unit of spatial analysis. Data from 24 wards were analyzed. The Discrete Poisson Probability Model was used to identify the clustering of deaths. Results: Deaths were concentrated within 12 wards located in the low-lying deltaic flood plains of the Chakaria HDSS area. The risk of death in the low-lying areas was statistically, significantly higher, 1.5 times, than the non-low-lying areas (p<0.02). Conclusion: Spatial analysis can be a useful tool for identifying high-risk mortality areas. An understanding of the risk factors prevalent in the low-lying areas can help design effective interventions to reduce mortality in these areas
Mutational spectrum and phenotypic variability of Duchenne muscular dystrophy and related disorders in a Bangladeshi population
\ua9 2023, The Author(s).Duchenne muscular dystrophy (DMD) is a severe rare neuromuscular disorder caused by mutations in the X-linked dystrophin gene. Several mutations have been identified, yet the full mutational spectrum, and their phenotypic consequences, will require genotyping across different populations. To this end, we undertook the first detailed genotype and phenotype characterization of DMD in the Bangladeshi population. We investigated the rare mutational and phenotypic spectrum of the DMD gene in 36 DMD-suspected Bangladeshi participants using an economically affordable diagnostic strategy involving initial screening for exonic deletions in the DMD gene via multiplex PCR, followed by testing PCR-negative patients for mutations using whole exome sequencing. The deletion mapping identified two critical DMD gene hotspot regions (near proximal and distal ends, spanning exons 8ā17 and exons 45ā53, respectively) that comprised 95% (21/22) of the deletions for this population cohort. From our exome analysis, we detected two novel pathogenic hemizygous mutations in exons 21 and 42 of the DMD gene, and novel pathogenic recessive and loss of function variants in four additional genes: SGCD, DYSF, COL6A3, and DOK7. Our phenotypic analysis showed that DMD suspected participants presented diverse phenotypes according to the location of the mutation and which gene was impacted. Our study provides ethnicity specific new insights into both clinical and genetic aspects of DMD
Nanosilver Colloids-Filled Photonic Crystal Arrays for Photoluminescence Enhancement
For the improved surface plasmon-coupled photoluminescence emission, a more accessible fabrication method of a controlled nanosilver pattern array was developed by effectively filling the predefined hole array with nanosilver colloid in a UV-curable resin via direct nanoimprinting. When applied to a glass substrate for light emittance with an oxide spacer layer on top of the nanosilver pattern, hybrid emission enhancements were produced from both the localized surface plasmon resonance-coupled emission enhancement and the guided light extraction from the photonic crystal array. When CdSe/ZnS nanocrystal quantum dots were deposited as an active emitter, a total photoluminescence intensity improvement of 84% was observed. This was attributed to contributions from both the silver nanoparticle filling and the nanoimprinted photonic crystal array
- ā¦