43 research outputs found

    Investigation of lateral load resistance of laterally loaded pile in sandy soil

    Get PDF
    Investigation of the lateral load resistance of pile is made by laboratory model test on single and group piles. The experiments are carried out with varying size, spacing of piles in group and length to diameter ratio (L/d) of the piles. Lateral resistance of pile is a function of shape, size, spacing and length to diameter ratio (L/d) of the pile. In this study, model pile is single pile, and group piles having configurations are of (2x1, 2x2) which satisfy the Meyerhof’s relative stiffness limit of pile for flexible pile. For model pile embedded length to diameter ratio (L/d) are 20, 30, 35 and spacing are S = 3d, 4.5d, 6d. These experiments are conducted in the sand available at North-South region (Rajshahi) in Bangladesh. Lateral loads are applied in the single and pile groups by a lateral load setup arrangement. Due to the lateral load the pile are deflected. The load-displacement responses, ultimate resistance, group efficiency of piles with different spacing and number of piles in group have been qualitatively and quantitatively investigated in the experiment. From the load-displacement curve, ultimate lateral load resistances are obtained by double tangent method. Also some analytical methods proposed by Meyerhof, Patra & Pise used to determine the ultimate lateral load resistance of pile and pile groups. Finally, the lateral resistance of pile obtains by experiment and the ultimate lateral load resistances obtained by analytical methods are compared and trying to find out a analytical methods to determine the lateral reasonably for the sand are available at North-South (region) Rajshahi In Bangladesh

    Mapping inequalities in exclusive breastfeeding in low- and middle-income countries, 2000–2018

    Full text link
    Exclusive breastfeeding (EBF)—giving infants only breast-milk for the first 6 months of life—is a component of optimal breastfeeding practices effective in preventing child morbidity and mortality. EBF practices are known to vary by population and comparable subnational estimates of prevalence and progress across low- and middle-income countries (LMICs) are required for planning policy and interventions. Here we present a geospatial analysis of EBF prevalence estimates from 2000 to 2018 across 94 LMICs mapped to policy-relevant administrative units (for example, districts), quantify subnational inequalities and their changes over time, and estimate probabilities of meeting the World Health Organization’s Global Nutrition Target (WHO GNT) of ≥70% EBF prevalence by 2030. While six LMICs are projected to meet the WHO GNT of ≥70% EBF prevalence at a national scale, only three are predicted to meet the target in all their district-level units by 2030

    First measurement of Ξc 0 production in pp collisions at s=7 TeV

    Full text link
    The production of the charm-strange baryon Ξc 0 is measured for the first time at the LHC via its semileptonic decay into eΞ−+νe in pp collisions at s=7 TeV with the ALICE detector. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 1<pT<8 GeV/c at mid-rapidity, |y|<0.5. The transverse momentum dependence of the Ξc 0 baryon production relative to the D0 meson production is compared to predictions of event generators with various tunes of the hadronisation mechanism, which are found to underestimate the measured cross-section ratio. © 2018 The Author(s

    Transverse momentum spectra and nuclear modification factors of charged particles in Xe–Xe collisions at sNN=5.44TeV

    Full text link
    Transverse momentum (pT) spectra of charged particles at mid-pseudorapidity in Xe–Xe collisions at sNN=5.44TeV measured with the ALICE apparatus at the Large Hadron Collider are reported. The kinematic range 0.15<pT<50GeV/c and |η|<0.8 is covered. Results are presented in nine classes of collision centrality in the 0–80% range. For comparison, a pp reference at the collision energy of s=5.44 TeV is obtained by interpolating between existing pp measurements at s=5.02 and 7 TeV. The nuclear modification factors in central Xe–Xe collisions and Pb–Pb collisions at a similar center-of-mass energy of sNN=5.02 TeV, and in addition at 2.76 TeV, at analogous ranges of charged particle multiplicity density 〈dNch/dη〉 show a remarkable similarity at pT>10 GeV/c. The centrality dependence of the ratio of the average transverse momentum 〈pT〉 in Xe–Xe collisions over Pb–Pb collision at s=5.02 TeV is compared to hydrodynamical model calculations. © 2018 The Autho

    ALICE Collaboration

    Full text link

    Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb–Pb collisions at sNN=2.76 TeV

    Full text link
    In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v2 reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb–Pb collisions at sNN=2.76 TeV. The two-particle correlator 〈cos⁡(φα−φβ)〉 calculated for different combinations of charges α and β is almost independent of v2 (for a given centrality), while the three-particle correlator 〈cos⁡(φα+φβ−2Ψ2)〉 scales almost linearly both with the event v2 and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on v2 points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10–50% centrality interval is found to be 26–33% at 95% confidence level. © 2017 The Author(s

    Measuring KS 0K± interactions using Pb–Pb collisions at sNN=2.76 TeV

    Full text link
    We present the first ever measurements of femtoscopic correlations between the KS 0 and K± particles. The analysis was performed on the data from Pb–Pb collisions at sNN=2.76 TeV measured by the ALICE experiment. The observed femtoscopic correlations are consistent with final-state interactions proceeding via the a0(980) resonance. The extracted kaon source radius and correlation strength parameters for KS 0K− are found to be equal within the experimental uncertainties to those for KS 0K+. Comparing the results of the present study with those from published identical-kaon femtoscopic studies by ALICE, mass and coupling parameters for the a0 resonance are tested. Our results are also compatible with the interpretation of the a0 having a tetraquark structure instead of that of a diquark. © 2017 The Autho

    Longitudinal asymmetry and its effect on pseudorapidity distributions in Pb–Pb collisions at sNN=2.76 TeV

    Full text link
    First results on the longitudinal asymmetry and its effect on the pseudorapidity distributions in Pb–Pb collisions at sNN = 2.76 TeV at the Large Hadron Collider are obtained with the ALICE detector. The longitudinal asymmetry arises because of an unequal number of participating nucleons from the two colliding nuclei, and is estimated for each event by measuring the energy in the forward neutron-Zero-Degree-Calorimeters (ZNs). The effect of the longitudinal asymmetry is measured on the pseudorapidity distributions of charged particles in the regions |η|<0.9, 2.8<η<5.1 and −3.7<η<−1.7 by taking the ratio of the pseudorapidity distributions from events corresponding to different regions of asymmetry. The coefficients of a polynomial fit to the ratio characterise the effect of the asymmetry. A Monte Carlo simulation using a Glauber model for the colliding nuclei is tuned to reproduce the spectrum in the ZNs and provides a relation between the measurable longitudinal asymmetry and the shift in the rapidity (y0) of the participant zone formed by the unequal number of participating nucleons. The dependence of the coefficient of the linear term in the polynomial expansion, c1, on the mean value of y0 is investigated. © 2018 The Author(s

    Analysis of the apparent nuclear modification in peripheral Pb–Pb collisions at 5.02 TeV

    Full text link
    Charged-particle spectra at midrapidity are measured in Pb–Pb collisions at the centre-of-mass energy per nucleon–nucleon pair s NN =5.02 TeV and presented in centrality classes ranging from most central (0–5%) to most peripheral (95–100%) collisions. Possible medium effects are quantified using the nuclear modification factor (R AA ) by comparing the measured spectra with those from proton–proton collisions, scaled by the number of independent nucleon–nucleon collisions obtained from a Glauber model. At large transverse momenta (8<p T <20GeV/c), the average R AA is found to increase from about 0.15 in 0–5% central to a maximum value of about 0.8 in 75–85% peripheral collisions, beyond which it falls off strongly to below 0.2 for the most peripheral collisions. Furthermore, R AA initially exhibits a positive slope as a function of p T in the 8–20 GeV/c interval, while for collisions beyond the 80% class the slope is negative. To reduce uncertainties related to event selection and normalization, we also provide the ratio of R AA in adjacent centrality intervals. Our results in peripheral collisions are consistent with a PYTHIA-based model without nuclear modification, demonstrating that biases caused by the event selection and collision geometry can lead to the apparent suppression in peripheral collisions. This explains the unintuitive observation that R AA is below unity in peripheral Pb–Pb, but equal to unity in minimum-bias p–Pb collisions despite similar charged-particle multiplicities. © 2019 Conseil Européen pour la Recherche Nucléair
    corecore