11 research outputs found

    Flow Structure at the Pannerdense Kop Bifurcation

    No full text
    Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Rivers, Ports, Waterways and Dredging Engineerin

    Quantum thermometry in optomechanics

    No full text
    We describe a method to control the cavity detuning in optomechanics experiments. This helps accurate measurements of the asymmetry in the motional sidebands, that testify the quantum behavior of the oscillator and quantifies its occupation number.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Else Kooi LaboratoryElectronic Components, Technology and MaterialsPhotovoltaic Materials and Device

    Calibrated quantum thermometry in cavity optomechanics

    No full text
    Cavity optomechanics has achieved the major breakthrough of the preparation and observation of macroscopic mechanical oscillators in non-classical states. The development of reliable indicators of the oscillator properties in these conditions is important also for applications to quantum technologies. We compare two procedures to infer the oscillator occupation number, minimizing the necessity of system calibrations. The former starts from homodyne spectra, the latter is based on the measurement of the motional sideband asymmetry in heterodyne spectra. Moreover, we describe and discuss a method to control the cavity detuning, that is a crucial parameter for the accuracy of the latter, intrinsically superior procedure.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Components, Technology and MaterialsEKL Processin

    Studies on nucleophilic substitution reactions with η6-o-dichlorobenzene-η5-cyclopentadienyliron hexafluorophosphate

    No full text
    Reaction of η6-o-dichlorobenzene-η5-cyclopentadienyliron hexafluorophosphate (IPF6) with an excess of phenol or p-thiocresol in the presence of K2CO3 could give disubstitution of both chloro groups of I, while a similar reaction with one equivalent of the nucleophile, and under conditions of high dilution, monosubstitution of only one of the chloro groups of I could be obtained. Similarly, di- or monosubstitution could be brought about under appropriate conditions with benzyl or methyl alcohol as the source of the nucleophile. While no reaction could take place between IPF6 and aniline, a reaction did occur between IPF6 and o-anisidine (o-methoxyaniline), but only the monosubstitution product was obtained, even in the presence of an excess of o-anisidine. Similar results of monosubstitution were observed with other nucleophiles containing the NH2 group, including NH3, NH2NH2, CH3NH2 and C6H5CH2NH2. These findings are consistent with the reported differences in yields when IPF6 was treated with two nucleophilic groups (OH, SH and/or NH2) located in the 1,2-positions of a benzene ring to give CpFe complexes of heterocyclic systems related to 9,10-dihydroanthracene with two hetero-atoms at the 9,10-positions [15]. Reactions were also carried out between IPF6 and the carbanion-enolate anion derived from acetylacetone, α-benzoylacetophenone, diethyl malonate or ethyl acetoacetate. In these cases, only monosubstitution of one of the chloro groups of I was observed, leading to the formation of a CC bond. A possible explanation for the formation of only monosubstitution products in reactions with N- or C-containing nucleophiles is discussed

    Quantum Signature of a Squeezed Mechanical Oscillator

    No full text
    Recent optomechanical experiments have observed nonclassical properties in macroscopic mechanical oscillators. A key indicator of such properties is the asymmetry in the strength of the motional sidebands produced in the probe electromagnetic field, which is originated by the noncommutativity between the oscillator ladder operators. Here we extend the analysis to a squeezed state of an oscillator embedded in an optical cavity, produced by the parametric effect originated by a suitable combination of optical fields. The motional sidebands assume a peculiar shape, related to the modified system dynamics, with asymmetric features revealing and quantifying the quantum component of the squeezed oscillator motion.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Components, Technology and Material

    Response of the Upper Dutch Rhine Bifurcation Region to Peak flows

    No full text
    Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Rivers, Ports, Waterways and Dredging Engineerin

    How Does a River Bifurcation System Respond to Peak Flows? A Case Study of the Upper Dutch Rhine Bifurcation Region

    No full text
    Sediment transport capacity and supply of sediment to a river channel increase significantly during peak flow events. Here we study how a river bifurcation system (partitioning water and sediment over its downstream branches) responds to peak flow events. We focus on the Pannerdense Kop bifurcation in the Dutch Rhine River, an engineered system where planform and channel width are fixed. We analyze water discharge and bed level data measured over the last century. We observe rapid aggradation in one of the branches (Pannerden Channel) following the peak flow events of 1993 and 1995, and little to no bed level change in the other branch (Waal). Prior to the event, both branches eroded, and the upstream part of the Pannerden Channel had a greater erosion rate than the Waal. After the 1993 and 1995 peak flow events, the erosion in the upstream part of the Pannerden Channel slowed significantly, whereas the upstream part of the Waal branch continued to erode (though at a smaller pace than before the peak flow events). This differential erosion has resulted in a gradual increase of water discharge toward the Waal branch. Interestingly, the bifurcation system does not appear to respond equally to all peak flow events. We hypothesize that the bifurcation response to the 1993 and 1995 peak flows differs from previous peak flows because of the sequence of the two events. Between the 1993 and 1995 events, the system may not have had sufficient time to disperse the sediment deposited at the upstream end of the Pannerden channel. Another reason for the response to the 1993 and 1995 peak flows to differ from previous events may be that the channel bed surface within the region of interest has coarsened significantly. This study illustrates the importance of peak flows regarding bifurcation dynamics, and further research is focused on the interaction between bifurcation dynamics and the dynamics of the larger-scale system.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Rivers, Ports, Waterways and Dredging Engineerin

    Quantum motion of a squeezed mechanical oscillator attained via an optomechanical experiment

    No full text
    We experimentally investigate a mechanical squeezed state realized in a parametrically modulated membrane resonator embedded in an optical cavity. We demonstrate that a quantum characteristic of the squeezed dynamics can be revealed and quantified even in a moderately warm oscillator, through the analysis of motional sidebands. We provide a theoretical framework for quantitatively interpreting the observations and present an extended comparison with the experiment. A notable result is that the spectral shape of each motional sideband provides a clear signature of a quantum mechanical squeezed state without the necessity of absolute calibrations, in particular in the regime where residual fluctuations in the squeezed quadrature are reduced below the zero-point level. Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Components, Technology and Material

    Probing quantum gravity effects with quantum mechanical oscillators

    No full text
    Abstract: Phenomenological models aiming to join gravity and quantum mechanics often predict effects that are potentially measurable in refined low-energy experiments. For instance, modified commutation relations between position and momentum, that account for a minimal scale length, yield a dynamics that can be codified in additional Hamiltonian terms. When applied to the paradigmatic case of a mechanical oscillator, such terms, at the lowest order in the deformation parameter, introduce a weak intrinsic nonlinearity and, consequently, deviations from the classical trajectory. This point of view has stimulated several experimental proposals and realizations, leading to meaningful upper limits to the deformation parameter. All such experiments are based on classical mechanical oscillators, i.e., excited from a thermal state. We remark indeed that decoherence, that plays a major role in distinguishing the classical from the quantum behavior of (macroscopic) systems, is not usually included in phenomenological quantum gravity models. However, it would not be surprising if peculiar features that are predicted by considering the joined roles of gravity and quantum physics should manifest themselves just on purely quantum objects. On the basis of this consideration, we propose experiments aiming to observe possible quantum gravity effects on macroscopic mechanical oscillators that are preliminary prepared in a high purity state, and we report on the status of their realization. Graphical abstract: [Figure not available: see fulltext.].The funding for the article is corrected to: Open access funding provided by Universita degli Studi di Firenze within the CRUI-CARE Agreement. The original article has been corrected.Electronic Components, Technology and Material
    corecore