220 research outputs found

    Coupled resonator vertical cavity laser diodes

    Full text link
    For many applications, the device performance of edge emitting semiconductor lasers can be significantly improved through the use of multiple section devices. For example, cleaved coupled cavity (C3) lasers have been shown to provide single mode operation, wavelength tuning, high speed switching, as well as the generation of short pulses via mode-locking and Q-switching [1]. Using composite resonators within a vertical cavity laser opens up new possibilities due to the unique ability to tailor the coupling between the monolithic cavities, incorporate passive or active resonators which are spectrally degenerate or detuned, and to fabricate these devices in 2-dimensional arrays. Composite resonator vertical cavity lasers (CRVCL) have been examined using optical pumping and electrical injection [2-5]. We report on CRVCL diodes and show that efficient modulation of the laser emission can be achieved by either forward or reverse biasing the passive cavity within a CRVCL

    Different types of visual cells in the photoreceptor layer of the retinae of the treeshrew (Tupaia belangeri chinensis) as revealed by scanning microscopy

    Get PDF
    The retinae of treeshrew have never been evaluated by scanning electron microscopic studies. This work described the visual cells in the photoreceptor layer of the retinae of treeshrew (Tupaia belangeri chinensis) living on the high plateau of Yunnan, China, via scanning electron microscopy. Results indicated five different types of cones morphologically, in which two of those have shown oil droplet like structures in their inner segments. To our knowledge, no prior studies have reported oil droplets in the visual cells of higher mammals, only in lower vertebrate and primitive mammals. In addition, this study revealed one type of degenerative visual cell without outer segments. The findings signal the needs for additional studies to understand the physiological functions and phylogenetic relationships of the diversity of visual cells in this group of mammal

    Quantum Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers

    Get PDF
    We present quantum Maxwell-Bloch equations (QMBE) for spatially inhomogeneous semiconductor laser devices. The QMBE are derived from fully quantum mechanical operator dynamics describing the interaction of the light field with the quantum states of the electrons and the holes near the band gap. By taking into account field-field correlations and field-dipole correlations, the QMBE include quantum noise effects which cause spontaneous emission and amplified spontaneous emission. In particular, the source of spontaneous emission is obtained by factorizing the dipole-dipole correlations into a product of electron and hole densities. The QMBE are formulated for general devices, for edge emitting lasers and for vertical cavity surface emitting lasers, providing a starting point for the detailed analysis of spatial coherence in the near field and far field patterns of such laser diodes. Analytical expressions are given for the spectra of gain and spontaneous emission described by the QMBE. These results are applied to the case of a broad area laser, for which the frequency and carrier density dependent spontaneous emission factor beta and the evolution of the far field pattern near threshold are derived.Comment: 22 pages RevTex and 7 figures, submitted to Phys.Rev.A, revisions in abstract and in the discussion of temporal coherenc

    General relativistic Sagnac formula revised

    Full text link
    The Sagnac effect is a time or phase shift observed between two beams of light traveling in opposite directions in a rotating interferometer. We show that the standard description of this effect within the framework of general relativity misses the effect of deflection of light due to rotational inertial forces. We derive the necessary modification and demonstrate it through a detailed analysis of the square Sagnac interferometer rotating about its symmetry axis in Minkowski space-time. The role of the time shift in a Sagnac interferometer in the synchronization procedure of remote clocks as well as its analogy with the Aharanov-Bohm effect are revised.Comment: 11 pages, 3 figure

    Superradiance of low density Frenkel excitons in a crystal slab of three-level atoms: Quantum interference effect

    Full text link
    We systematically study the fluorescence of low density Frenkel excitons in a crystal slab containing NTN_T V-type three-level atoms. Based on symmetric quasi-spin realization of SU(3) in large NN limit, the two-mode exciton operators are invoked to depict various collective excitations of the collection of these V-type atoms starting from their ground state. By making use of the rotating wave approximation, the light intensity of radiation for the single lattice layer is investigated in detail. As a quantum coherence effect, the quantum beat phenomenon is discussed in detail for different initial excitonic states. We also test the above results analytically without the consideration of the rotating wave approximation and the self-interaction of radiance field is also included.Comment: 18pages, 17 figures. Resubmit to Phys. Rev.
    • …
    corecore