456 research outputs found
Determination of flow resistance coefficient for vegetation in open channel: laboratory study
This study focused on determination of flow resistances coefficient for grass in an open channel. Laboratory works were conducted to examine the effects of varying of roughness elements on the flume to determine flow resistance coefficient and also to determine the optimum flow resistance with five different flow rate, Q. Laboratory study with two type of vegetation which are Cow Grass and Pearl Grass were implementing to the bed of a flume. The roughness coefficient, n value is determine using Manning’s equation while Soil Conservation Services (SCS) method was used to determine the surface resistance. From the experiment, the flow resistance coefficient for Cow Grass in range 0.0008 - 0.0039 while Pearl Grass value for the flow resistance coefficient are in between 0.0013 - 0.0054. As a conclusion the vegetation roughness value in open channel are depends on density, distribution type of vegetation used and physical characteristic of the vegetation itsel
The M2/M5 BPS Partition Functions from Supergravity
In the framework of the AdS/CFT duality, we calculate the supersymmetric
partition function of the superconformal field theories living in the world
volume of either -branes or -branes. We used the dual
supergravity partition function in a saddle point approximation over
supersymmetric Black Holes. Since our BHs are written in asymptotically global
co-ordinates, the dual SCFTs are in for . The
resulting partition function shows phase transitions, constraints on the phase
space and allowed us to identify unstable BPS Black hole in the phase.
These configurations should correspond to unstable configurations in the dual
theory. We also report an intriguing relation between the most general Witten
Index, computed in the above theories, and our BPS partition functions.Comment: 9 pages, 2 columns, 4 figures, revtex, typos corrected, reference
adde
Study of the Effect of Mold Corner Shape on the Initial Solidification Behavior of Molten Steel Using Mold Simulator
The chamfered mold with a typical corner shape (angle between the chamfered face and hot face is 45 deg) was applied to the mold simulator study in this paper, and the results were compared with the previous results from a well-developed right-angle mold simulator system. The results suggested that the designed chamfered structure would increase the thermal resistance and weaken the two-dimensional heat transfer around the mold corner, causing the homogeneity of the mold surface temperatures and heat fluxes. In addition, the chamfered structure can decrease the fluctuation of the steel level and the liquid slag flow around the meniscus at mold corner. The cooling intensities at different longitudinal sections of shell are close to each other due to the similar time-average solidification factors, which are 2.392 mm/s1/2 (section A-A: chamfered center), 2.372 mm/s1/2 (section B-B: 135 deg corner), and 2.380 mm/s1/2 (section D-D: face), respectively. For the same oscillation mark (OM), the heights of OM roots at different positions
(profile L1 (face), profile L2 (135 deg corner), and profile L3 (chamfered center)) are very close to each other. The average value of height difference (HD) between two OMs roots for L1 and L2 is 0.22 mm, and for L2 and L3 is 0.38 mm. Finally, with the help of metallographic examination, the shapes of different hooks were also discussed
Search for a strongly decaying neutral charmed pentaquark
We present a search for a charmed pentaquark decaying strongly to
. Finding no evidence for such a state, we set limits on the cross
section times branching ratio relative to and under particular
assumptions about the production mechanism.Comment: To be published in Physics Letters
Analysis of microstructure effects on edge crack of thin strip during cold rolling
Edge cracks in cold rolling of the thin strip affect the strip quality and productivity significantly. In this study, an experimental and mechanical investigation on microstructures has been carried out to study the edge crack formation during cold rolling of the thin strip. The effects of the feed material microstructures on the edge crack evolution were studied employing optical microscopy and scanning electron microscopy (SEM). Experimental observation indicates that fine grain occurs in hot-rolled microstructure and coarse grain is produced in ferritic rolled microstructure. Different grain sizes affect significantly the formation mechanics of the microcrack, crack initiation, and orientation of crack extension. The grain size and grain boundaries effects on crack retardation are discussed also during edge crack initiation. During the crack growth in coarse grain, most edge crack tips will blunt, which improves the crack toughness by causing less stress concentration. Overall, the fine microstructure shows a good crack initiation resistance, whereas the coarse microstructure has a better resistance to crack propagation. This research provides additional understanding of the mechanism of microstructure influence on edge crack evolution of cold strip rolling, which could be helpful for developing defect-free thin strip
Multi-response analysis in the material characterisation of electrospun poly (lactic acid)/halloysite nanotube composite fibres based on Taguchi design of experiments: fibre diameter, non-intercalation and nucleation effects
Poly (lactic acid) (PLA)/halloysite nanotube (HNT) composite fibres were prepared by using a simple and versatile electrospinning technique. The systematic approach via Taguchi design of experiments (DoE) was implemented to investigate factorial effects of applied voltage, feed rate of solution, collector distance and HNT concentration on the fibre diameter, HNT non-intercalation and nucleation effects. The HNT intercalation level, composite fibre morphology, their associated fibre diameter and thermal properties were evaluated by means of X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), imaging analysis and differential scanning calorimetry (DSC), respectively. HNT non-intercalation phenomenon appears to be manifested as reflected by the minimal shift of XRD peaks for all electrospun PLA/HNT composite fibres. The smaller-fibre-diameter characteristic was found to be sequentially associated with the feed rate of solution, collector distance and applied voltage. The glass transition temperature (T g) and melting temperature (T m) are not highly affected by varying the material and electrospinning parameters. However, as the indicator of the nucleation effect, the crystallisation temperature (T c) of PLA/HNT composite fibres is predominantly impacted by HNT concentration and applied voltage. It is evident that HNT’s nucleating agent role is confirmed when embedded with HNTs to accelerate the cold crystallisation of composite fibres. Taguchi DoE method has been found to be an effective approach to statistically optimise critical parameters used in electrospinning in order to effectively tailor the resulting physical features and thermal properties of PLA/HNT composite fibres
Raditive decay of single charmed baryons
The electromagnetic transitions between () and
() baryons are important decay modes to observe new hadronic
states experimentally. For the estimation of these transitions widths, we
employ a non-relativistic quark potential model description with color coulomb
plus linear confinement potential. Such a description has been employed to
compute the ground state masses and magnetic moments of the single heavy flavor
baryons. The magnetic moments of the baryons are obtained using the spin-flavor
structure of the constituting quark composition of the baryon. Here, we also
define an effective constituent mass of the quarks (ecqm) by taking into
account the binding effects of the quarks within the baryon. The radiative
transition widths are computed in terms of the magnetic moments of the baryon
and the photon energy. Our results are compared with other theoretical models.Comment: 06 Pages, Presented at XVIII DAE-BRNS symposium on High energy
Physics, Banaras Hindu University, Varansi, INDI
A review of the fossil record of turtles of the clade Pan-Carettochelys
Turtles of the total clade Pan-Carettochelys have a relatively poor fossil record that extends from the Early Cretaceous. The clade is only found in Asia during the Cretaceous, but spreads to Europe and North America during the Eocene. Neogene finds are restricted to Europe, Africa and Australia, whereas the only surviving species, Carettochelys insculpta, lives in New Guinea and the Northern Territories of Australia. The ecology of fossil pan-carettochelyids appears similar to that of the extant C. insculpta, although more primitive representatives were likely less adapted to brackish water. Current phylogenies only recognize three internested clades: Pan- Carettochelys, Carettochelyidae and Carettochelyinae. A taxonomic review of the group concludes that of 25 named taxa, 13 are nomina valida, 7 are nomina invalida, 3 are nomina dubia, and 2 are nomina nuda
Allaeochelys libyca, a new carettochelyine turtle from the middle miocene (Langhian) of Libya
Fossil carettochelyine turtles are well known from the Paleogene of Europe (Allaeochelys), North America and Asia (Anosteira); however, the previously known Neogene fossil record is highly fragmentary and was therefore unsuitable for taxonomic analysis. In this work, we present a new carettochelyine taxon, Allaeochelys libyca, from the Middle Miocene (Langhian) of Gebel Zelten (Libya) based on an incomplete skull and disarticulated postcranial elements. The new taxon is diagnosed relative to the extant Carettochelys insculpta based on the placement of the foramen posterius canalis carotici interni close to the fenestra postotica, the horizontal orientation of the tubercula basioccipitalis, the substantial contribution of the opisthotic to the base of the tubercula basioccipitalis, the presence of a triangular pterygoid fossa, the arrangement of the mandibular condyles along a plane and the presence of an extremely well-developed fossa at the base of the processus mandibularis. A phylogenetic analysis of pancarettochelyids confirms the monophyly of Carettochelyidae and Carettochelyinae but resulted in a paraphyletic taxon, Allaeochelys. For the sake of nomenclatural stability, we provisionally retain the genus Allaeochelys as paraphyletic relative to the extant Carettochelys insculpta
What is a chiral 2d CFT? And what does it have to do with extremal black holes?
The near horizon limit of the extremal BTZ black hole is a``self-dual
orbifold'' of AdS_3. This geometry has a null circle on its boundary, and thus
the dual field theory is a Discrete Light Cone Quantized (DLCQ) two dimensional
CFT. The same geometry can be compactified to two dimensions giving AdS_2 with
a constant electric field. The kinematics of the DLCQ show that in a consistent
quantum theory of gravity in these backgrounds there can be no dynamics in
AdS_2, which is consistent with older ideas about instabilities in this space.
We show how the necessary boundary conditions eliminating AdS_2 fluctuations
can be implemented, leaving one copy of a Virasoro algebra as the asymptotic
symmetry group. Our considerations clarify some aspects of the chiral CFTs
appearing in proposed dual descriptions of the near-horizon degrees of freedom
of extremal black holes.Comment: 21 pages, no fig. v2: references added, minor improvement
- …