13,783 research outputs found

    New negative differential resistance device based on resonant interband tunneling

    Get PDF
    We propose and demonstrate a novel negative differential resistance device based on resonant interband tunneling. Electrons in the InAs/AlSb/GaSb/AlSb/InAs structure tunnel from the InAs conduction band into a quantized state in the GaSb valence band, giving rise to a peak in the current-voltage characteristic. This heterostructure design virtually eliminates many of the competing transport mechanisms which limit the performance of conventional double-barrier structures. Peak-to-valley current ratios as high as 20 and 88 are observed at room temperature and liquid-nitrogen temperature, respectively. These are the highest values reported for any tunnel structure

    Observation of large peak-to-valley current ratios and large peak current densities in AlSb/InAs/AlSb double-barrier tunnel structures

    Get PDF
    We report improved peak-to-valley current ratios and peak current densities in InAs/AlSb double-barrier, negative differential resistance tunnel structures. Our peak-to-valley current ratios are 2.9 at room temperature and 10 at liquid-nitrogen temperatures. Furthermore, we have observed peak current densities of 1.7×10^5 A/cm^2. These figures of merit are substantially better than previously reported values. The improvements are obtained by adding spacer layers near the barriers, thinner well regions, and thinner barriers

    Demonstration of large peak-to-valley current ratios in InAs/AlGaSb/InAs single-barrier heterostructures

    Get PDF
    We report large peak-to-valley current ratios in InAs/AlxGa1−xSb/InAs single-barrier tunnel structures. The mechanism for single-barrier negative differential resistance (NDR) has been proposed and demonstrated recently. A peak-to-valley current ratio of 3.4 (1.2) at 77 K (295 K), which is substantially larger than what has been previously reported, was observed in a 200-Å-thick Al0.42Ga0.58Sb barrier. A comparison with a calculated current-voltage curve yields good agreement in terms of peak current and the slope of the NDR region. The single-barrier structure is a candidate for high-speed devices because of expected short tunneling times and a wide NDR region

    Type II superlattices for infrared detectors and devices

    Get PDF
    Superlattices consisting of combinations of III-V semiconductors with type II band alignments are of interest for infrared applications because their energy gaps can be made smaller than those of any 'natural' III-V compounds. Specifically, it has been demonstrated that both InSb/InAsxSb1-x superlattices and Ga1-xInxSb/InAs superlattices can possess energy gaps in the 8-14 mu m range. The efforts have focused on the Ga1-xInxSb/InAs system because of its extreme broken gap band alignment, which results in narrow energy gaps for very short superlattice periods. The authors report the use of in situ chemical doping of Ga1-xInxSb/InAs superlattices to fabricate p-n photodiodes. These diodes display a clear photovoltaic response with a threshold near 12 mu m. They have also attained outstanding structural quality in Ga1-xInxSb/InAs superlattices grown on radiatively heated GaSb substrates. Cross-sectional transmission electron microscope images of these superlattices display no dislocations, while high resolution X-ray diffraction scans reveal sharp high-order superlattice satellites and strong Pendellosung fringes

    Accommodation of lattice mismatch in Ge_(x)Si_(1−x)/Si superlattices

    Get PDF
    We present evidence that the critical thickness for the appearance of misfit defects in a given material and heteroepitaxial structure is not simply a function of lattice mismatch. We report substantial differences in the relaxation of mismatch stress in Ge_(0.5)Si_(0.5)/Si superlattices grown at different temperatures on (100) Si substrates. Samples have been analyzed by x‐ray diffraction, channeled Rutherford backscattering, and transmission electron microscopy. While a superlattice grown at 365 °C demonstrates a high degree of elastic strain, with a dislocation density <10^5 cm^(−2) , structures grown at higher temperatures show increasing numbers of structural defects, with densities reaching 2×10^(10) cm^(−2) at a growth temperature of 530 °C. Our results suggest that it is possible to freeze a lattice‐mismatched structure in a highly strained metastable state. Thus it is not surprising that experimentally observed critical thicknesses are rarely in agreement with those predicted by equilibrium theories

    Growth and characterization of ZnTe films grown on GaAs, InAs, GaSb, and ZnTe

    Get PDF
    We report the successful growth of ZnTe on nearly lattice-matched III-V buffer layers of InAs (0.75%), GaSb (0.15%), and on GaAs and ZnTe by molecular beam epitaxy. In situ reflection high-energy electron diffraction measurements showed the characteristic streak patterns indicative of two-dimensional growth. Photoluminescence measurements on these films show strong and sharp features near the band edge with no detectable luminescence at longer wavelengths. The integrated photoluminescence intensity from the ZnTe layers increased with better lattice match to the buffer layer. The ZnTe epilayers grown on high-purity ZnTe substrates exhibited stronger luminescence than the substrates. We observe narrow luminescence linewidths (full width at half maximum ~ 1–2 Å) indicative of uniform high quality growth. Secondary-ion mass spectroscopy and electron microprobe measurements, however, reveal substantial outdiffusion of Ga and In for growths on the III-V buffer layers

    Electrical determination of the valence-band discontinuity in HgTe-CdTe heterojunctions

    Get PDF
    Current-voltage behavior is studied experimentally in a Hg0.78Cd0.22Te-CdTe-Hg0.78Cd0.22Te heterostructure grown by molecular beam epitaxy. At temperatures above 160 K, energy-band diagrams suggest that the dominant low-bias current is thermionic hole emission across the CdTe barrier layer. This interpretation yields a direct determination of 390±75 meV for the HgTe-CdTe valence-band discontinuity at 300 K. Similar analyses of current-voltage data taken at 190–300 K suggest that the valence-band offset decreases at low temperatures in this heterojunction

    Experimental observation of negative differential resistance from an InAs/GaSb interface

    Get PDF
    We have observed negative differential resistance at room temperature from devices consisting of a single interface between n-type InAs and p-type GaSb. InAs and GaSb have a type II staggered band alignment; hence, the negative differential resistance arises from the same mechanism as in a p+-n+ tunnel diode. Room-temperature peak current densities of 8.2×10^4 A/cm^2 and 4.2×10^4 A/cm^2 were measured for structures with and without undoped spacer layers at the heterointerface, respectively

    Charge sensing in carbon nanotube quantum dots on microsecond timescales

    Full text link
    We report fast, simultaneous charge sensing and transport measurements of gate-defined carbon nanotube quantum dots. Aluminum radio frequency single electron transistors (rf-SETs) capacitively coupled to the nanotube dot provide single-electron charge sensing on microsecond timescales. Simultaneously, rf reflectometry allows fast measurement of transport through the nanotube dot. Charge stability diagrams for the nanotube dot in the Coulomb blockade regime show extended Coulomb diamonds into the high-bias regime, as well as even-odd filling effects, revealed in charge sensing data.Comment: 4 pages, 4 figure
    corecore