314 research outputs found
Existence and Stability of Standing Pulses in Neural Networks: II Stability
We analyze the stability of standing pulse solutions of a neural network
integro-differential equation. The network consists of a coarse-grained layer
of neurons synaptically connected by lateral inhibition with a non-saturating
nonlinear gain function. When two standing single-pulse solutions coexist, the
small pulse is unstable, and the large pulse is stable. The large single-pulse
is bistable with the ``all-off'' state. This bistable localized activity may
have strong implications for the mechanism underlying working memory. We show
that dimple pulses have similar stability properties to large pulses but double
pulses are unstable.Comment: 31 pages, 16 figures, submitted to SIAM Journal on Applied Dynamical
System
Frequency control in synchronized networks of inhibitory neurons
We analyze the control of frequency for a synchronized inhibitory neuronal
network. The analysis is done for a reduced membrane model with a
biophysically-based synaptic influence. We argue that such a reduced model can
quantitatively capture the frequency behavior of a larger class of neuronal
models. We show that in different parameter regimes, the network frequency
depends in different ways on the intrinsic and synaptic time constants. Only in
one portion of the parameter space, called `phasic', is the network period
proportional to the synaptic decay time. These results are discussed in
connection with previous work of the authors, which showed that for mildly
heterogeneous networks, the synchrony breaks down, but coherence is preserved
much more for systems in the phasic regime than in the other regimes. These
results imply that for mildly heterogeneous networks, the existence of a
coherent rhythm implies a linear dependence of the network period on synaptic
decay time, and a much weaker dependence on the drive to the cells. We give
experimental evidence for this conclusion.Comment: 18 pages, 3 figures, Kluwer.sty. J. Comp. Neurosci. (in press).
Originally submitted to the neuro-sys archive which was never publicly
announced (was 9803001
Molecular Evolution of the Transmembrane Domains of G Protein-Coupled Receptors
G protein-coupled receptors (GPCRs) are a superfamily of integral membrane proteins vital for signaling and are important targets for pharmaceutical intervention in humans. Previously, we identified a group of ten amino acid positions (called key positions), within the seven transmembrane domain (7TM) interhelical region, which had high mutual information with each other and many other positions in the 7TM. Here, we estimated the evolutionary selection pressure at those key positions. We found that the key positions of receptors for small molecule natural ligands were under strong negative selection. Receptors naturally activated by lipids had weaker negative selection in general when compared to small molecule-activated receptors. Selection pressure varied widely in peptide-activated receptors. We used this observation to predict that a subgroup of orphan GPCRs not under strong selection may not possess a natural small-molecule ligand. In the subgroup of MRGX1-type GPCRs, we identified a key position, along with two non-key positions, under statistically significant positive selection
- β¦