200 research outputs found
Fluid dynamics of sinking carbon dioxide hydrate particle releases for direct ocean carbon sequestration
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2008.Includes bibliographical references (p. 203-211).One strategy to remove anthropogenic COâ from the atmosphere to mitigate climate change is by direct ocean injection. Liquid COâ can react with seawater to form solid partially reacted COâ hydrate composite particles (pure hydrate plus unreacted COâ and water) with densities several percent above ambient seawater. The most recent field injections at depths of 1500 m in Monterey Canyon resulted in long curved cylinders with diameters - 2.5 cm and lengths up to - 1 m that were observed to sink at - 4 cm/s. This thesis examines whether releasing the partially reacted hydrate particles into the ocean at - 100 kg/s of COâ (roughly the output of one 500 MW coal power plant) is able to create sufficient dilution to minimize the impact on marine life. We developed a drag coefficient model for cylindrical particles in free fall. Applying the new drag coefficient model to recently observed field injections to predict their descent, the recently produced field particles were estimated to have had a ~ 16% reaction efficiency and to have sunk 100 m before completely dissolving. Ambient density stratification and currents will also affect particle descent, and in turn the dilution of dissolved COâ. Three methods of injection of composite particles were evaluated, each with unique merits. Firstly, we can release hydrate particles (with a range of reaction efficiencies) continuously from a moving ship. This is shown to provide excellent dilution of the discharged COâ. Second, we can release them from a stationary pipe to create a plume that generally sinks further than individual particles.(cont.) However we show numerically that, while this method appears to be the most practical from an engineering standpoint, the dilutions and sequestration depths are highly dependent on ambient conditions. The third method involves constructing a shroud around a fixed source to shelter the plume from effects of ambient stratification and current. The shroud also serves as an inverted chimney, inducing a down draft that transports the dissolving particles to a depth of lower ambient distur-bance. Laboratory measurements using particle image velocimetry (PIV) shows that the induced flow depends on the shroud length and diameter, as well as the particle buoyancy and size.by Aaron C. Chow.Ph.D
Effects of buoyancy source composition on multiphase plume behavior in stratification
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2004.Includes bibliographical references (p. 173-179).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Experiments are performed where a dense multiphase plume is released vertically in a salinity stratified ambient. The constituent phase composition of the initial buoyancy flux can be dense brine, particles, or a mixture of the two in a prescribed ratio. The resulting trapping heights and peeling depths are recorded by visual acquisition and from dye fluorescence measurements. Also, the radial concentration distribution of the dispersed phase after the first peeling event is obtained by collecting the settled particles from the bottom of the tank. Analytical models assuming plug flow and well-mixed particle distributions within the intrusion layer are used to predict the spread of the particle distribution based on initial buoyancy flux, momentum flux, stratification parameter and particle fall velocity. The effects of initial momentum and volume flux on peel and trap depths were studied by comparing the predictions from these models. Finally the observed results are compared to a single-phase plume numerical prediction (CORMIX) and a multiphase numerical plume model. Observed peeling depths were not sensitive to buoyancy composition, while observed trap depths decreased slightly with high particle fractions, possibly from the 'lift-off' phenomenon where particle fallout decreases the bulk buoyancy of the intrusion layer. The observed radial distribution was Gaussian, consistent with particles being vertially well mixed in the intrusion layer, and the standard deviation agreed well with predictions.by Aaron C. Chow.S.M
Risk of Esophageal Adenocarcinoma Decreases With Height, Based on Consortium Analysis and Confirmed by Mendelian Randomization
Background & Aims
Risks for some cancers increase with height. We investigated the relationship between height and risk of esophageal adenocarcinoma (EAC) and its precursor, Barrett's esophagus (BE).
Methods
We analyzed epidemiologic and genome-wide genomic data from individuals of European ancestry in the Barrett's and Esophageal Adenocarcinoma Consortium, from 999 cases of EAC, 2061 cases of BE, and 2168 population controls. Multivariable logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (95% CI) for associations between height and risks of EAC and BE. We performed a Mendelian randomization analysis to estimate an unconfounded effect of height on EAC and BE using a genetic risk score derived from 243 genetic variants associated with height as an instrumental variable.
Results
Height was associated inversely with EAC (per 10-cm increase in height: OR, 0.70; 95% CI, 0.62â0.79 for men and OR, 0.57; 95% CI 0.40â0.80 for women) and BE (per 10-cm increase in height: OR, 0.69; 95% CI, 0.62â0.77 for men and OR, 0.61; 95% CI, 0.48â0.77 for women). The risk estimates were consistent across strata of age, education level, smoking, gastroesophageal reflux symptoms, body mass index, and weight. Mendelian randomization analysis yielded results quantitatively similar to those from the conventional epidemiologic analysis.
Conclusions
Height is associated inversely with risks of EAC and BE. Results from the Mendelian randomization study showed that the inverse association observed did not result from confounding factors. Mechanistic studies of the effect of height on EAC and BE are warranted; height could have utility in clinical risk stratification
Interactions Between Genetic Variants and Environmental Factors Affect Risk of Esophageal Adenocarcinoma and Barrett's Esophagus.
BACKGROUND & AIMS: Genome-wide association studies (GWAS) have identified more than 20 susceptibility loci for esophageal adenocarcinoma (EA) and Barrett's esophagus (BE). However, variants in these loci account for a small fraction of cases of EA and BE. Genetic factors might interact with environmental factors to affect risk of EA and BE. We aimed to identify single nucleotide polymorphisms (SNPs) that may modify the associations of body mass index (BMI), smoking, and gastroesophageal reflux disease (GERD), with risks of EA and BE. METHODS: We collected data on single BMI measurements, smoking status, and symptoms of GERD from 2284 patients with EA, 3104 patients with BE, and 2182 healthy individuals (controls) participating in the Barrett's and Esophageal Adenocarcinoma Consortium GWAS, the UK Barrett's Esophagus Gene Study, and the UK Stomach and Oesophageal Cancer Study. We analyzed 993,501 SNPs in DNA samples of all study subjects. We used standard case-control logistic regression to test for gene-environment interactions. RESULTS: For EA, rs13429103 at chromosome 2p25.1, near the RNF144A-LOC339788 gene, showed a borderline significant interaction with smoking status (P = 2.18Ă10-7). Ever smoking was associated with an almost 12-fold increase in risk of EA among individuals with rs13429103-AA genotype (odds ratio=11.82; 95% CI, 4.03-34.67). Three SNPs (rs12465911, rs2341926, rs13396805) at chromosome 2q23.3, near the RND3-RBM43 gene, interacted with GERD symptoms (P = 1.70Ă10-7, P = 1.83Ă10-7, and P = 3.58Ă10-7, respectively) to affect risk of EA. For BE, rs491603 at chromosome 1p34.3, near the EIF2C3 gene, and rs11631094 at chromosome 15q14, at the SLC12A6 gene, interacted with BMI (P = 4.44Ă10-7) and pack-years of smoking history (P = 2.82Ă10-7), respectively. CONCLUSION: The associations of BMI, smoking, and GERD symptoms with risks of EA and BE appear to vary with SNPs at chromosomes 1, 2, and 15. Validation of these suggestive interactions is warranted.UK funding from MRC and Cancer Research U
Measurement of the production of a W boson in association with a charm quark in pp collisions at âs = 7 TeV with the ATLAS detector
The production of a W boson in association with a single charm quark is studied using 4.6 fbâ1 of pp collision data at sâ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26â0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio Ï(W + +cÂŻÂŻ)/Ï(W â + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the sâsÂŻÂŻÂŻ quark asymmetry
Time to get personal? The impact of researchers choices on the selection of treatment targets using the experience sampling methodology:The impact of researchers choices on the selection of treatment targets using the experience sampling methodology
OBJECTIVE: One of the promises of the experience sampling methodology (ESM) is that a statistical analysis of an individualâs emotions, cognitions and behaviors in everyday-life could be used to identify relevant treatment targets. A requisite for clinical implementation is that outcomes of such person-specific time-series analyses are not wholly contingent on the researcher performing them. METHODS: To evaluate this, we crowdsourced the analysis of one individual patientâs ESM data to 12 prominent research teams, asking them what symptom(s) they would advise the treating clinician to target in subsequent treatment. RESULTS: Variation was evident at different stages of the analysis, from preprocessing steps (e.g., variable selection, clustering, handling of missing data) to the type of statistics and rationale for selecting targets. Most teams did include a type of vector autoregressive model, examining relations between symptoms over time. Although most teams were confident their selected targets would provide useful information to the clinician, not one recommendation was similar: both the number (0â16) and nature of selected targets varied widely. CONCLUSION: This study makes transparent that the selection of treatment targets based on personalized models using ESM data is currently highly conditional on subjective analytical choices and highlights key conceptual and methodological issues that need to be addressed in moving towards clinical implementation
Germline variation in inflammation-related pathways and risk of Barrett's oesophagus and oesophageal adenocarcinoma
Esophageal adenocarcinoma (EA) incidence has risen sharply in Western countries over recent decades. Local and systemic inflammation, operating downstream of disease-associated exposures, is considered an important contributor to EA pathogenesis. Several risk factors have been identified for EA and its precursor, Barrettâs esophagus (BE), including symptomatic reflux, obesity, and smoking. The role of inherited genetic susceptibility remains an area of active investigation. To explore whether germline variation related to inflammatory processes influences susceptibility to BE/EA, we used data from a genome-wide association study (GWAS) of 2,515 EA cases, 3,295 BE cases, and 3,207 controls. Our analysis included 7,863 single nucleotide polymorphisms (SNPs) in 449 genes assigned to five pathways: cyclooxygenase (COX), cytokine signaling, oxidative stress, human leukocyte antigen, and NFÎșB. A principal components-based analytic framework was employed to evaluate pathway-level and gene-level associations with disease risk. We identified a significant signal for the COX pathway in relation to BE risk (P=0.0059, FDR q=0.03), and in gene-level analyses found an association with MGST1 (microsomal glutathione-S-transferase 1; P=0.0005, q=0.005). Assessment of 36 MGST1 SNPs identified 14 variants associated with elevated BE risk (q<0.05). Of these, four were subsequently confirmed (P<5.5 Ă 10â5) in a meta-analysis encompassing an independent set of 1,851 BE cases and 3,496 controls. Three of these SNPs (rs3852575, rs73112090, rs4149204) were associated with similar elevations in EA risk. This study provides the most comprehensive evaluation of inflammation-related germline variation in relation to risk of BE/EA, and suggests that variants in MGST1 influence disease susceptibility
LSST: from Science Drivers to Reference Design and Anticipated Data Products
(Abridged) We describe here the most ambitious survey currently planned in
the optical, the Large Synoptic Survey Telescope (LSST). A vast array of
science will be enabled by a single wide-deep-fast sky survey, and LSST will
have unique survey capability in the faint time domain. The LSST design is
driven by four main science themes: probing dark energy and dark matter, taking
an inventory of the Solar System, exploring the transient optical sky, and
mapping the Milky Way. LSST will be a wide-field ground-based system sited at
Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m
effective) primary mirror, a 9.6 deg field of view, and a 3.2 Gigapixel
camera. The standard observing sequence will consist of pairs of 15-second
exposures in a given field, with two such visits in each pointing in a given
night. With these repeats, the LSST system is capable of imaging about 10,000
square degrees of sky in a single filter in three nights. The typical 5
point-source depth in a single visit in will be (AB). The
project is in the construction phase and will begin regular survey operations
by 2022. The survey area will be contained within 30,000 deg with
, and will be imaged multiple times in six bands, ,
covering the wavelength range 320--1050 nm. About 90\% of the observing time
will be devoted to a deep-wide-fast survey mode which will uniformly observe a
18,000 deg region about 800 times (summed over all six bands) during the
anticipated 10 years of operations, and yield a coadded map to . The
remaining 10\% of the observing time will be allocated to projects such as a
Very Deep and Fast time domain survey. The goal is to make LSST data products,
including a relational database of about 32 trillion observations of 40 billion
objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures
available from https://www.lsst.org/overvie
Sex-Specific Genetic Associations for Barrett's Esophagus and Esophageal Adenocarcinoma
Acknowledgments We thank Dr Stuart MacGregor for his input on the study proposal and review of prior versions of this manuscript. We also thank all patients and controls for participating in this study. The MD Anderson controls were drawn from dbGaP (study accession: phs000187.v1.p1). Genotyping of these controls were done through the University of Texas MD Anderson Cancer Center (UTMDACC) and the Johns Hopkins University Center for Inherited Disease Research (CIDR). We acknowledge the principal investigators of this study: Christopher Amos, Qingyi Wei, and Jeffrey E. Lee. Controls from the Genome-Wide Association Study of Parkinson Disease were obtained from dbGaP (study accession: phs000196.v2.p1). This work, in part, used data from the National Institute of Neurological Disorders and Stroke (NINDS) dbGaP database from the CIDR: NeuroGenetics Research Consortium Parkinsonâs disease study. We acknowledge the principal investigators and coinvestigators of this study: Haydeh Payami, John Nutt, Cyrus Zabetian, Stewart Factor, Eric Molho, and Donald Higgins. Controls from the Chronic Renal Insufficiency Cohort (CRIC) were drawn from dbGaP (study accession: phs000524.v1.p1). The CRIC study was done by the CRIC investigators and supported by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Data and samples from CRIC reported here were supplied by NIDDK Central Repositories. This report was not prepared in collaboration with investigators of the CRIC study and does not necessarily reflect the opinions or views of the CRIC study, the NIDDK Central Repositories, or the NIDDK. We acknowledge the principal investigators and the project officer of this study: Harold I Feldman, Raymond R Townsend, Lawrence J. Appel, Mahboob Rahman, Akinlolu Ojo, James P. Lash, Jiang He, Alan S Go, and John W. Kusek. The following UK hospitals participated in sample collection through the Stomach and Oesophageal Cancer Study (SOCS) collaboration network: Addenbrookeâs Hospital, University College London, Bedford Hinchingbrooke Hospital, Peterborough City Hospital, West Suffolk Norfolk and Norwich University Hospital, Churchill Hospital, John Hospital, Velindre Hospital, St Bartholomewâs Hospital, Queenâs Burton, Queen Elisabeth Hospital, Diana Princess of Wales, Scunthorpe General Hospital, Royal Devon & Exeter Hospital, New Cross Hospital, Belfast City Hospital, Good Hope Hospital, Heartlands Hospital, South Tyneside District General Hospital, Cumberland Infirmary, West Cumberland Hospital, Withybush General Hospital, Stoke Mandeville Hospital, Wycombe General Hospital, Wexham Park Hospital, Southend Hospital, Guyâs Hospital, Southampton General Hospital, Bronglais General Hospital, Aberdeen Royal Infirmary, Manor Hospital, Clatterbridge Centre for Oncology, Lincoln County Hospital, Pilgrim Hospital, Grantham & District Hospital, St Maryâs Hospital London, Croydon University Hospital, Whipps Cross University Hospital, Wansbeck General Hospital, Hillingdon Hospital, Milton Keynes General Hospital, Royal Gwent Hospital, Tameside General Hospital, Castle Hill Hospital, St Richardâs Hospital, Ipswich Hospital, St Helens Hospital, Whiston Hospital, Countess of Chester Hospital, St Maryâs Hospital IOW, Queen Alexandra Hospital, Glan Clwyd Hospital, Wrexham Maelor Hospital, Darent Valley Hospital, Royal Derby Hospital, Derbyshire Royal Infirmary, Scarborough General Hospital, Kettering General Hospital, Kidderminster General Hospital, Royal Lancaster Infirmary, Furness General Hospital, Westmorland General Hospital, James Cook University Hospital, Friarage Hospital, Stepping Hill Hospital, St Georgeâs Hospital London, Doncaster Royal Infirmary, Maidstone Hospital, Tunbridge Hospital, Prince Charles Hospital, Hartlepool Hospital, University Hospital of North Tees, Ysbyty Gwynedd, St. Jameâs University Hospital, Leeds General Infirmary, North Hampshire Hospital, Royal Preston Hospital, Chorley and District General, Airedale General Hospital, Huddersfield Royal Infirmary, Calderdale Royal Hospital, Torbay District General Hospital, Leighton Hospital, Royal Albert Edward Infirmary, Royal Surrey County Hospital, Bradford Royal Infirmary, Burnley General Hospital, Royal Blackburn Hospital, Royal Sussex County Hospital, Freeman Hospital, Royal Victoria Infirmary, Victoria Hospital Blackpool, Weston Park Hospital, Royal Hampshire County Hospital, Conquest Hospital, Royal Bournemouth General Hospital, Mount Vernon Hospital, Lister Hospital, William Harvey Hospital, Kent and Canterbury Hospital, Great Western Hospital, Dumfries and Galloway Royal Infirmary, Poole General Hospital, St Hellier Hospital, North Devon District Hospital, Salisbury District Hospital, Weston General Hospital, University Hospital Coventry, Warwick Hospital, George Eliot Hospital, Alexandra Hospital, Nottingham University Hospital, Royal Chesterfield Hospital, Yeovil District Hospital, Darlington Memorial Hospital, University Hospital of North Durham, Bishop Auckland General Hospital, Musgrove Park Hospital, Rochdale Infirmary, North Manchester General, Altnagelvin Area Hospital, Dorset County Hospital, James Paget Hospital, Derriford Hospital, Newham General Hospital, Ealing Hospital, Pinderfields General Hospital, Clayton Hospital, Dewsbury & District Hospital, Pontefract General Infirmary, Worthing Hospital, Macclesfield Hospital, University Hospital of North Staffordshire, Salford Royal Hospital, Royal Shrewsbury Hospital, and Manchester Royal Infirmary. Conflict of interest The authors disclose no conflicts. Funding This work was primarily funded by the National Institutes of Health (NIH) (R01CA136725). The funders of the study had no role in the design, analysis, or interpretation of the data, nor in writing or publication decisions related to this article. Jing Dong was supported by a Research Training Grant from the Cancer Prevention and Research Institute of Texas (CPRIT; RP160097) and the Research and Education Program Fund, a component of the Advancing a Healthier Wisconsin endowment at the Medical College of Wisconsin (AHW). Quinn T. Ostrom was supported by RP160097. Puya Gharahkhani was supported by a grant from National Health and Medical Research Council of Australia (1123248). Geoffrey Liu was supported by the Alan B. Brown Chair in Molecular Genomics and by the CCO Chair in Experimental Therapeutics and Population Studies. The University of Cambridge received salary support for Paul D. Pharoah from the NHS in the East of England through the Clinical Academic Reserve. Brian J. Reid was supported by a grant (P01CA91955) from the NIH/National Cancer Institute (NCI). Nicholas J. Shaheen was supported by a grant (P30 DK034987) from NIH. Thomas L. Vaughan was supported by NIH Established Investigator Award K05CA124911. Michael B. Cook was supported by the Intramural Research Program of the NCI, NIH, Department of Health and Human Services. Douglas A. Corley was supported by the NIH grants R03 KD 58294, R21DK077742, and RO1 DK63616 and NCI grant R01CA136725. Carlo Maj was supported by the BONFOR-program of the Medical Faculty, University of Bonn (O-147.0002). Jesper Lagergren was supported by the United European Gastroenterology (UEG) Research Prize. David C. Whiteman was supported by fellowships from the National Health and Medical Research Council of Australia (1058522, 1155413).Peer reviewedPostprin
Downregulation of Cinnamyl-Alcohol Dehydrogenase in Switchgrass by RNA Silencing Results in Enhanced Glucose Release after Cellulase Treatment
Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in monolignol biosynthesis and genetic evidence indicates CAD deficiency in grasses both decreases overall lignin, alters lignin structure and increases enzymatic recovery of sugars. To ascertain the effect of CAD downregulation in switchgrass, RNA mediated silencing of CAD was induced through Agrobacterium mediated transformation of cv. âAlamoâ with an inverted repeat construct containing a fragment derived from the coding sequence of PviCAD2. The resulting primary transformants accumulated less CAD RNA transcript and protein than control transformants and were demonstrated to be stably transformed with between 1 and 5 copies of the T-DNA. CAD activity against coniferaldehyde, and sinapaldehyde in stems of silenced lines was significantly reduced as was overall lignin and cutin. Glucose release from ground samples pretreated with ammonium hydroxide and digested with cellulases was greater than in control transformants. When stained with the lignin and cutin specific stain phloroglucinol-HCl the staining intensity of one line indicated greater incorporation of hydroxycinnamyl aldehydes in the lignin
- âŠ