520 research outputs found
Road Rage Menace: A Cross-sectional Study to Assess Driver Anger Level in Public Motor Vehicle Drivers in a City in Central India
Introduction: Road rage and aggressive driving is a prevalent condition in today’s society due to motorists’ frustrations during heavy traffic volumes. Objective: This study was done to assess the level of anger amongst the drivers of public transport vehicles in Indore, using Driving Anger Scale (DAS by Deffenbacher et. al.) and various factors affecting it. Material and Methods: A cross-sectional study was conducted among 135 drivers of Public transport vehicle drivers (Star bus, City-van and star cab drivers) in Indore to assess their anger level using Driving Anger Scale. The participants were required to record the amount of anger they would experience in response to each item in the scale (1=not at all angry, 2=a little angry, 3=some anger, 4=much anger, 5=very much angry). Results: The mean DAS score in Indore was found to be 3.013 and in the three organizations namely Star bus drivers, City van drivers and Star cab drivers was 2.92, 3.08 and 3.04 respectively. The DAS score of drivers with respect to the 6 sub-scales were: hostile gestures (Star bus -3.42,City van -3.67,Star cab -3.38), slow driving (Star bus -2.73,City van driv-2.78,Star cab-3.17), traffic obstructions (Star bus-2.85,City van -3.25,Star cab-3.18), discourtesy (Star bus -3.23,City van-3.33,Star cab -3.25)and police presence (Star bus -2.15,City van -1.99,Star cab -2.78), illegal driving (Star bus -3.04,City van -3.14,Star cab -2.89). The DAS scores of the drivers did not vary significantly with age group, experience, and educational qualification. Conclusion: Though DAS scores did not vary between the three groups of drivers, however average level anger for various given circumstances commonly found in the Indian traffic scenario was on the higher side
A Real-Time Method for Detecting Temporary Process Variants in Event Log Data
During the execution of a business process, organizations or individual employees may introduce mistakes, as well as temporary or permanent changes to the process. Such mistakes and changes in the process can introduce anomalies and deviations in the event logs, which in turn introduce temporary and periodic process variants. Early identification of such deviations from the most common types of cases can help an organization to act on them. Keeping this problem in focus, we developed a method that can discover temporary and periodic changes to processes in event log data in real-time. The method classifies cases into common, periodic, temporary, and anomalous cases. The proposed method is evaluated using synthetic and real-world data with promising results
A First Step Towards Automatically Building Network Representations
To fully harness Grids, users or middlewares must have some knowledge on the
topology of the platform interconnection network. As such knowledge is usually
not available, one must uses tools which automatically build a topological
network model through some measurements. In this article, we define a
methodology to assess the quality of these network model building tools, and we
apply this methodology to representatives of the main classes of model builders
and to two new algorithms. We show that none of the main existing techniques
build models that enable to accurately predict the running time of simple
application kernels for actual platforms. However some of the new algorithms we
propose give excellent results in a wide range of situations
Estimation of contrast agent bolus arrival delays for improved reproducibility of liver DCE MRI
Delays between contrast agent (CA) arrival at the site of vascular input function (VIF) sampling and the tissue of interest affect dynamic contrast enhanced (DCE) MRI pharmacokinetic modelling. We investigate effects of altering VIF CA bolus arrival delays on liver DCE MRI perfusion parameters, propose an alternative approach to estimating delays and evaluate reproducibility.
Thirteen healthy volunteers (28.7 ± 1.9 years, seven males) underwent liver DCE MRI using dual-input single compartment modelling, with reproducibility (n = 9) measured at 7 days. Effects of VIF CA bolus arrival delays were assessed for arterial and portal venous input functions. Delays were pre-estimated using linear regression, with restricted free modelling around the pre-estimated delay. Perfusion parameters and 7 days reproducibility were compared using this method, freely modelled delays and no delays using one-way ANOVA. Reproducibility was assessed using Bland–Altman analysis of agreement.
Maximum percent change relative to parameters obtained using zero delays, were −31% for portal venous (PV) perfusion, +43% for total liver blood flow (TLBF), +3247% for hepatic arterial (HA) fraction, +150% for mean transit time and −10% for distribution volume. Differences were demonstrated between the 3 methods for PV perfusion (p = 0.0085) and HA fraction (p < 0.0001), but not other parameters. Improved mean differences and Bland–Altman 95% Limits-of-Agreement for reproducibility of PV perfusion (9.3 ml/min/100 g, ±506.1 ml/min/100 g) and TLBF (43.8 ml/min/100 g, ±586.7 ml/min/100 g) were demonstrated using pre-estimated delays with constrained free modelling.
CA bolus arrival delays cause profound differences in liver DCE MRI quantification. Pre-estimation of delays with constrained free modelling improved 7 days reproducibility of perfusion parameters in volunteers
Cold-active Moulds from Jammu and Kashmir, India as Potential Source of Cold-active Enzymes
Cold-active moulds have been isolated from the soil of ten selected sites of Jammu and Kashmir (India) in the winter season. Most of them turned out to be psychrotolerant except BPF-5 and BPF-6 which showed defective growth above 20oC, and thus were identified as psychrophilic moulds. BPF-5 was also found to form sexual structure at 4oC, while BPF-6 formed melanaceous filaments in old culture. The isolate BPF-5 has been identified as Truncatella angustata and BPF-6 as Psudogymnoascus sp. Among psychrotolerant moulds, the species of Cladosporium and Penicillium were found to be dominant taxa in terms of frequency and number of species while Rhizomucor sp., to be the most prolific mould under in vitro culture. Many of them formed adaptive structures and pigment. All of these isolates were able to utilize starch, cellulose, casein and tween-80 while many of them were able to use pectin and carboxy methyl cellulose (CMC) as sole carbon source at 4oC suggesting that they might be important sources of cold-adapted enzymes and other biomolecules. Although α-amylase from all the isolates showed residual cold-activity, that from BPF-6 exhibited the highest one suggesting it to be further explored for biotechnological applications
Improved hepatic arterial fraction estimation using cardiac output correction of arterial input functions for liver DCE MRI
Liver dynamic contrast enhanced (DCE) MRI pharmacokinetic modelling could be useful in the assessment of diffuse liver disease and focal liver lesions, but is compromised by errors in arterial input function (AIF) sampling. In this study, we apply cardiac output correction to arterial input functions (AIFs) for liver dynamic contrast enhanced (DCE) MRI and investigate the effect on dual-input single compartment hepatic perfusion parameter estimation and reproducibility. Thirteen healthy volunteers (28.7±1.94 years, seven males) underwent liver DCE MRI and cardiac output measurement using aortic root phase contrast MRI (PCMRI), with reproducibility (n=9) measured at seven days. Cardiac output AIF correction was undertaken by constraining the first pass AIF enhancement curve using the indicator-dilution principle. Hepatic perfusion parameters with and without cardiac output AIF correction were compared and seven-day reproducibility assessed. Differences between cardiac output corrected and uncorrected liver DCE MRI portal venous (PV) perfusion (p=0.066), total liver blood flow (TLBF)(p=0.101), hepatic arterial (HA) fraction (p=0.895), mean transit time (MTT)(p=0.646), distribution volume (DV)(p=0.890) were not significantly different. Seven-day corrected HA fraction reproducibility was improved (mean difference 0.3%, Bland-Altman 95% Limits-of-Agreement (BA95%LoA) ±27.9%, Coefficient of Variation (CoV) 61.4% vs 9.3%, ±35.5%, 81.7% respectively without correction). Seven-day uncorrected PV perfusion was also improved (mean difference 9.3 ml/min/100g, BA95%LoA ±506.1 ml/min/100g, CoV 64.1% vs 0.9 ml/min/100g, ±562.8 ml/min/100g, 65.1% respectively with correction) as was uncorrected TLBF(mean difference 43.8 ml/min/100g, BA95%LoA ±586.7 ml/min/100g, CoV 58.3% vs 13.3 ml/min/100g, ±661.5 ml/min/100g, 60.9% respectively with correction). Reproducibility of uncorrected MTT was similar (uncorrected mean difference 2.4s, BA95%LoA ±26.7s, CoV 60.8% uncorrected vs 3.7s, ±27.8s, 62.0% respectively with correction), as was and DV (uncorrected mean difference 14.1%, BA95%LoA ±48.2%, CoV 24.7% vs 10.3%, ±46.0%, 23.9% respectively with correction). Cardiac output AIF correction does not significantly affect the estimation of hepatic perfusion parameters but demonstrates improvements in normal volunteer seven-day HA fraction reproducibility, but deterioration in PV perfusion and TLBF reproducibility. Improved HA fraction reproducibility maybe important as arterialisation of liver perfusion is increased in chronic liver disease and within malignant liver lesions
Respiratory motion correction in dynamic MRI using robust data decomposition registration - Application to DCE-MRI.
Motion correction in Dynamic Contrast Enhanced (DCE-) MRI is challenging because rapid intensity changes can compromise common (intensity based) registration algorithms. In this study we introduce a novel registration technique based on robust principal component analysis (RPCA) to decompose a given time-series into a low rank and a sparse component. This allows robust separation of motion components that can be registered, from intensity variations that are left unchanged. This Robust Data Decomposition Registration (RDDR) is demonstrated on both simulated and a wide range of clinical data. Robustness to different types of motion and breathing choices during acquisition is demonstrated for a variety of imaged organs including liver, small bowel and prostate. The analysis of clinically relevant regions of interest showed both a decrease of error (15-62% reduction following registration) in tissue time-intensity curves and improved areas under the curve (AUC60) at early enhancement
Cardiac-induced liver deformation as a measure of liver stiffness using dynamic imaging without magnetization tagging-preclinical proof-of-concept, clinical translation, reproducibility and feasibility in patients with cirrhosis
Purpose:
MR elastography and magnetization-tagging use liver stiffness (LS) measurements to diagnose fibrosis but require physical drivers, specialist sequences and post-processing. Here we evaluate non-rigid registration of dynamic two-dimensional cine MRI images to measure cardiac-induced liver deformation (LD) as a measure of LS by (i) assessing preclinical proof-of-concept, (ii) clinical reproducibility and inter-reader variability, (iii) the effects of hepatic hemodynamic changes and (iv) feasibility in patients with cirrhosis. /
Methods:
Sprague–Dawley rats (n = 21 bile duct ligated (BDL), n = 17 sham-operated controls) and fasted patients with liver cirrhosis (n = 11) and healthy volunteers (HVs, n = 10) underwent spoiled gradient-echo short-axis cardiac cine MRI studies at 9.4 T (rodents) and 3.0 T (humans). LD measurements were obtained from intrahepatic sub-cardiac regions-of-interest close to the diaphragmatic margin. One-week reproducibility and prandial stress induced hemodynamic changes were assessed in healthy volunteers. /
Results:
Normalized LD was higher in BDL (1.304 ± 0.062) compared with sham-operated rats (1.058 ± 0.045, P = 0.0031). HV seven-day reproducibility Bland–Altman (BA) limits-of-agreement (LoAs) were ± 0.028 a.u. and inter-reader variability BA LoAs were ± 0.030 a.u. Post-prandial LD increases were non-significant (+ 0.0083 ± 0.0076 a.u., P = 0.3028) and uncorrelated with PV flow changes (r = 0.42, p = 0.2219). LD measurements successfully obtained from all patients were not significantly higher in cirrhotics (0.102 ± 0.0099 a.u.) compared with HVs (0.080 ± 0.0063 a.u., P = 0.0847). /
Conclusion:
Cardiac-induced LD is a conceptually reasonable approach from preclinical studies, measurements demonstrate good reproducibility and inter-reader variability, are less likely to be affected by hepatic hemodynamic changes and are feasible in patients with cirrhosis
Use of Caval Subtraction 2D Phase-Contrast MR Imaging to Measure Total Liver and Hepatic Arterial Blood Flow: Preclinical Validation and Initial Clinical Translation
Purpose To validate caval subtraction two-dimensional (2D) phase-contrast magnetic resonance (MR) imaging measurements of total liver blood flow (TLBF) and hepatic arterial fraction in an animal model and evaluate consistency and reproducibility in humans. Materials and Methods Approval from the institutional ethical committee for animal care and research ethics was obtained. Fifteen Sprague-Dawley rats underwent 2D phase-contrast MR imaging of the portal vein (PV) and infrahepatic and suprahepatic inferior vena cava (IVC). TLBF and hepatic arterial flow were estimated by subtracting infrahepatic from suprahepatic IVC flow and PV flow from estimated TLBF, respectively. Direct PV transit-time ultrasonography (US) and fluorescent microsphere measurements of hepatic arterial fraction were the standards of reference. Thereafter, consistency of caval subtraction phase-contrast MR imaging-derived TLBF and hepatic arterial flow was assessed in 13 volunteers (mean age, 28.3 years ± 1.4) against directly measured phase-contrast MR imaging PV and proper hepatic arterial inflow; reproducibility was measured after 7 days. Bland-Altman analysis of agreement and coefficient of variation comparisons were undertaken. Results There was good agreement between PV flow measured with phase-contrast MR imaging and that measured with transit-time US (mean difference, -3.5 mL/min/100 g; 95% limits of agreement [LOA], ±61.3 mL/min/100 g). Hepatic arterial fraction obtained with caval subtraction agreed well with those with fluorescent microspheres (mean difference, 4.2%; 95% LOA, ±20.5%). Good consistency was demonstrated between TLBF in humans measured with caval subtraction and direct inflow phase-contrast MR imaging (mean difference, -1.3 mL/min/100 g; 95% LOA, ±23.1 mL/min/100 g). TLBF reproducibility at 7 days was similar between the two methods (95% LOA, ±31.6 mL/min/100 g vs ±29.6 mL/min/100 g). Conclusion Caval subtraction phase-contrast MR imaging is a simple and clinically viable method for measuring TLBF and hepatic arterial flow. Online supplemental material is available for this article
- …