43 research outputs found

    Concordance of the Resting State Networks in Typically Developing, 6-to 7-Year-Old Children and Healthy Adults

    No full text
    Though fairly well-studied in adults, less is known about the manifestation of resting state networks (RSN) in children. We examined the validity of RSN derived in an ethnically diverse group of typically developing 6- to 7-year-old children. We hypothesized that the RSNs in young children would be robust and would reliably show significant concordance with previously published RSN in adults. Additionally, we hypothesized that a smaller sample size using this robust technique would be comparable in quality to pediatric RSNs found in a larger cohort study. Furthermore, we posited that compared to the adult RSNs, the primary sensorimotor and the default mode networks (DMNs) in this pediatric group would demonstrate the greatest correspondence, while the executive function networks would exhibit a lesser degree of spatial overlap. Resting state functional magnetic resonance images (rs-fMRI) were acquired in 18 children between 6 and 7 years recruited from an ethnically diverse population in the Mid-South region of the United States. Twenty RSNs were derived using group independent component analysis and their spatial correspondence with previously published adult RSNs was examined. We demonstrate that the rs-fMRI in this group can be deconstructed into the fundamental RSN as all the major RSNs previously described in adults and in a large sample that included older children can be observed in our sample of young children. Further, the primary visual, auditory, and somatosensory networks, as well as the default mode, and frontoparietal networks derived in this group exhibited a greater spatial concordance with those seen in adults. The motor, temporoparietal, executive control, dorsal attention, and cerebellar networks in children had less spatial overlap with the corresponding RSNs in adults. Our findings suggest that several salient RSNs can be mapped reliably in small and diverse pediatric cohort within a narrow age range and the evolution of these RSNs can be studied reliably in such groups during early childhood and adolescence

    CT and MR Appearance of Teeth: Analysis of Anatomy and Embryology and Implications for Disease

    No full text
    Abnormalities of dental development and anatomy may suggest the presence of congenital or acquired anomalies. The detection of abnormalities, therefore, is an important skill for radiologists to achieve. Knowledge of dental embryology and an understanding of the radiologic appearances of teeth at various stages of maturation are required for the appreciation of abnormal dental development. While many tooth abnormalities are well-depicted on dedicated dental radiographs, the first encounter with a dental anomaly may be by a radiologist on a computed tomographic (CT) or magnetic resonance (MR) exam performed for other reasons. This article depicts normal dental anatomy and development, describing the appearance of the neonatal dentition on CT and MRI, the modalities most often encountered by clinical radiologists. The radiology and dental literature are reviewed, and key concepts are illustrated with supplemental cases from our institution. The value of knowledge of dental development is investigated using the analysis of consecutive MR brain examinations. Finally, the anatomical principles are applied to the diagnosis of odontogenic infection on CT. Through analysis of the literature and case data, the contrast of dental pathology with normal anatomy and development facilitates the detection and characterization of both congenital and acquired dental disease

    Diffusion characteristics of pediatric pineal tumors.

    No full text
    BACKGROUND: Diffusion weighted imaging (DWI) has been shown to be helpful in characterizing tumor cellularity, and predicting histology. Several works have evaluated this technique for pineal tumors; however studies to date have not focused on pediatric pineal tumors. OBJECTIVE: We evaluated the diffusion characteristics of pediatric pineal tumors to confirm if patterns seen in studies using mixed pediatric and adult populations remain valid. MATERIALS AND METHODS: This retrospective study was performed after Institutional Review Board approval. We retrospectively evaluated all patients 18 years of age and younger with pineal tumors from a single institution where preoperative diffusion weighted imaging as well as histologic characterization was available. RESULTS: Twenty patients (13 male, 7 female) with pineal tumors were identified: seven with pineoblastoma, four with Primitive Neuroectodermal Tumor (PNET), two with other pineal tumors, and seven with germ cell tumors including two germinomas, three teratomas, and one mixed germinoma-teratoma. The mean apparent diffusion coefficient (ADC) values in pineoblastoma (544 ± 65 × 10(–6) mm(2)/s) and pineoblastoma/PNET (595 ± 144 × 10(–6) mm(2)/s) was lower than that of the germ cell tumors (1284 ± 334 × 10(–6) mm(2)/s; p < 0.0001 vs pineoblastoma). One highly cellular germinoma had an ADC value of 694 × 10(–6) mm(2)/s. CONCLUSION: ADC values can aid in differentiation of pineoblastoma/PNET from germ cell tumors in a population of children with pineal masses

    Parenteral nutrition compromises neurodevelopment of preterm pigs

    No full text
    Background: Despite advances in nutritional support and intensive care, preterm infants are at higher risk of compromised neurodevelopment. Objective: This study evaluated the contribution of total parenteral nutrition (PN) to compromised neurodevelopment after preterm birth. Methods: Preterm pigs were provided PN or enteral nutrition (EN) for 10 d. Neurodevelopment was assessed by observations of motor activity and evaluation of sensory/motor reflexes, brain weight, MRI, and cerebellar histology. Results: Despite similar gains in body weight, PN pigs had smaller brains (32 ± 0.4 vs. 35 ± 0.6 g; P 5 0.0002) including the cerebellum, as well as reduced motor activity (P = 0.005), which corresponded to underdeveloped myelination (P = 0.004) measured by diffusion tensor imaging. PN resulted in lower serum triglycerides (17 ± 5.9 vs. 27 ± 3.1 mg/dL; P = 0.05), total cholesterol (3169.6 vs. 8568.1mg/dL; P = 0.04), VLDL cholesterol (3.761.2 vs. 5.760.7mg/dL; P = 0.04), andHDL cholesterol (16 ± 4.6 vs. 57 ± 7.3 mg/dL; P = 0.03) and nonsignificantly lower LDL cholesterol (10.7 ± 4.4 vs. 22.7 ± 2.9 mg/dL; P = 0.09). Conclusions: The compromised neurodevelopment caused by total PN is a novel finding, was independent of confounding variables (disease, inconsistent gestational ages, diverse genetics, extrauterine growth retardation, and inconsistent neonatal intensive care unit protocols), and highlights a need to improve current PN solutions. The preterm pig is a translational animal model for improving nutrition support to enhance neurodevelopment of preterminfants requiring PN

    Initial Experience with a Handheld Device Digital Imaging and Communications in Medicine Viewer: OsiriX Mobile on the iPhone

    No full text
    Medical imaging is commonly used to diagnose many emergent conditions, as well as plan treatment. Digital images can be reviewed on almost any computing platform. Modern mobile phones and handheld devices are portable computing platforms with robust software programming interfaces, powerful processors, and high-resolution displays. OsiriX mobile, a new Digital Imaging and Communications in Medicine viewing program, is available for the iPhone/iPod touch platform. This raises the possibility of mobile review of diagnostic medical images to expedite diagnosis and treatment planning using a commercial off the shelf solution, facilitating communication among radiologists and referring clinicians
    corecore